Cytotoxic T lymphocytes (CTLs) specific for conserved viral antigens can respond to different strains of virus, in contrast to antibodies, which are generally strain-specific. The generation of such CTLs in vivo usually requires endogenous expression of the antigen, as occurs in the case of virus infection. To generate a viral antigen for presentation to the immune system without the limitations of direct peptide delivery or viral vectors, plasmid DNA encoding influenza A nucleoprotein was injected into the quadriceps of BALB/c mice. This resulted in the generation of nucleoprotein-specific CTLs and protection from a subsequent challenge with a heterologous strain of influenza A virus, as measured by decreased viral lung titers, inhibition of mass loss, and increased survival.
Upon injection of NP DNA, or after infection with influenza virus, CTL responses generated in the chimeras were restricted to the donor MHC haplotype. Thus cells of BM lineage were definitively shown to be responsible for priming such CTL responses after infection or DNA immunization. Moreover, expression of antigen by muscle cells in BM chimeric mice after myoblast transplantation is sufficient to induce CTL restricted only by the MHC haplotype of the donor BM. This indicates that transfer of antigen from myocytes to professional APCs can occur, thus obviating a requirement for direct transfection of BM-derived cells.
Expression of reporter genes in muscle cells has been achieved by intramuscular (i.m.) injection of plasmid DNA expression vectors. We previously demonstrated that this technique is an effective means of immunization to elicit both antibodies capable of conferring homologous protection and cell‐mediated immunity leading to cross‐strain protection against influenza virus challenge in mice. These results suggested that expression of viral proteins by muscle cells can result in the generation of cellular immune responses, including cytotoxic T lymphocytes (CTL). However, because DNA has the potential to be internalized and expressed by other cell types, we sought to determine whether or not induction of CTL required synthesis of antigen in non‐muscle cells and, if not, whether transfer of antigen to antigen‐presenting cells from muscle cells may be involved. In the present study, we demonstrate that transplantation of nucleoprotein (NP)‐transfected myoblasts into syngeneic mice led to the generation of NP‐specific antibodies and CTL, and cross‐strain protective immunity against a lethal challenge with influenza virus. Furthermore, transplantation of NP‐expressing myoblasts (H‐2k) intraperitoneally into F1 hybrid mice (H‐2d × H‐2k) elicited NP CTL restricted by the MHC haplotype of both parental strains. These results indicate that NP expression by muscle cells after transplantation was sufficient to generate protective cell‐mediated immunity, and that induction of the CTL response was mediated, at least in part, by transfer of antigen from the transplanted muscle cells to a host cell.
Complement-mediated bactericidal antibodies in serum confer protection against meningococcal disease. The minimum protective titer is estimated to be between 1:4 and 1:8 when measured by the Goldschneider assay performed with human complement, the assay used in the 1960s to establish the correlation between bactericidal antibodies and protection. A more recently described bactericidal assay standardized by an international consortium uses rabbit complement, which is known to augment bactericidal titers. To define a protective titer measured by the standardized assay, we compared bactericidal titers against serogroup C strains measured by this assay to titers measured by the assay described by Goldschneider et al. A titer of >1:128 measured by the standardized assay was needed to predict with >80% certainty a positive titer of >1:4 as measured by the Goldschneider assay. However, the majority of samples with titers of 1:4 measured by the Goldschneider assay had titers of <1:128 when measured by the standardized assay. Therefore, by the results of the standardized assay such persons would be falsely categorized as being susceptible to disease. In conclusion, high bactericidal titers measured with the standardized assay performed with rabbit complement are predictive of protection, but no threshold titer is both sensitive and specific for predicting a positive titer measured by the Goldschneider assay using human complement. Up to 10% of the U.S. adult population lacks intrinsic bactericidal activity against serogroup C strains in serum and can serve as complement donors. Therefore, use of the Goldschneider assay or an equivalent assay performed with human complement is preferred over assays that use rabbit complement.
DNA vaccination is an effective means of eliciting both humoral and cellular immunity, including cytotoxic T lymphocytes (CTL). Using an influenza virus model, we previously demonstrated that injection of DNA encoding influenza virus nucleoprotein (NP) induced major histocompatibility complex class I-restricted CTL and cross-strain protection from lethal virus challenge in mice (J. B. Ulmer et al., Science 259:1745–1749, 1993). In the present study, we have characterized in more detail the cellular immune responses induced by NP DNA, which included robust lymphoproliferation and Th1-type cytokine secretion (high levels of gamma interferon and interleukin-2 [IL-2], with little IL-4 or IL-10) in response to antigen-specific restimulation of splenocytes in vitro. These responses were mediated by CD4+ T cells, as shown by in vitro depletion of T-cell subsets. Taken together, these results indicate that immunization with NP DNA primes both cytolytic CD8+ T cells and cytokine-secreting CD4+ T cells. Further, we demonstrate by adoptive transfer and in vivo depletion of T-cell subsets that both of these types of T cells act as effectors in protective immunity against influenza virus challenge conferred by NP DNA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.