One of the most suitable methods for the mass production of complicated shapes is injection molding due to its superior production rate and quality. The key to producing higher quality products in injection molding is proper injection speed, pressure, and mold design. Conventional methods relying on the operator’s expertise and defect detection techniques are ineffective in reducing defects. Hence, there is a need for more close control over these operating parameters using various machine learning techniques. Neural networks have considerable applications in the injection molding process consisting of optimization, prediction, identification, classification, controlling, modeling, and monitoring, particularly in manufacturing. In recent research, many critical issues in applying machine learning and neural network in injection molding in practical have been addressed. Some problems include data division, collection, and preprocessing steps, such as considering the inputs, networks, and outputs, algorithms used, models utilized for testing and training, and performance criteria set during validation and verification. This review briefly explains working on machine learning and artificial neural network and optimizing injection molding in industries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.