Dynamical stochastic models of single neurons and neural networks often take the form of a system of nу2 coupled stochastic differential equations. We consider such systems under the assumption that third and higher order central moments are relatively small. In the general case, a system of 1 2 n(nϩ3) ͑generally͒ nonlinear coupled ordinary differential equations holds for the approximate means, variances, and covariances. For the general linear system the solutions of these equations give exact results-this is illustrated in a simple case. Generally, the moment equations can be solved numerically. Results are given for a spiking Fitzhugh-Nagumo model neuron driven by a current with additive white noise. Differential equations are obtained for the means, variances, and covariances of the dynamical variables in a network of n connected spiking neurons in the presence of noise.
An analytical approach is presented for determining the response of a neuron or of the activity in a network of connected neurons, represented by systems of nonlinear ordinary stochastic differential equations--the Fitzhugh-Nagumo system with Gaussian white noise current. For a single neuron, five equations hold for the first- and second-order central moments of the voltage and recovery variables. From this system we obtain, under certain assumptions, five differential equations for the means, variances, and covariance of the two components. One may use these quantities to estimate the probability that a neuron is emitting an action potential at any given time. The differential equations are solved by numerical methods. We also perform simulations on the stochastic Fitzugh-Nagumo system and compare the results with those obtained from the differential equations for both sustained and intermittent deterministic current inputs with superimposed noise. For intermittent currents, which mimic synaptic input, the agreement between the analytical and simulation results for the moments is excellent. For sustained input, the analytical approximations perform well for small noise as there is excellent agreement for the moments. In addition, the probability that a neuron is spiking as obtained from the empirical distribution of the potential in the simulations gives a result almost identical to that obtained using the analytical approach. However, when there is sustained large-amplitude noise, the analytical method is only accurate for short time intervals. Using the simulation method, we study the distribution of the interspike interval directly from simulated sample paths. We confirm that noise extends the range of input currents over which (nonperiodic) spike trains may exist and investigate the dependence of such firing on the magnitude of the mean input current and the noise amplitude. For networks we find the differential equations for the means, variances, and covariances of the voltage and recovery variables and show how solving them leads to an expression for the probability that a given neuron, or given set of neurons, is firing at time t. Using such expressions one may implement dynamical rules for changing synaptic strengths directly without sampling. The present analytical method applies equally well to temporally nonhomogeneous input currents and is expected to be useful for computational studies of information processing in various nervous system centers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.