Deep learning techniques, in particular generative models, have taken on great importance in medical image analysis. This paper surveys fundamental deep learning concepts related to medical image generation. It provides concise overviews of studies which use some of the latest state-of-the-art models from last years applied to medical images of different injured body areas or organs that have a disease associated with (e.g., brain tumor and COVID-19 lungs pneumonia). The motivation for this study is to offer a comprehensive overview of artificial neural networks (NNs) and deep generative models in medical imaging, so more groups and authors that are not familiar with deep learning take into consideration its use in medicine works. We review the use of generative models, such as generative adversarial networks and variational autoencoders, as techniques to achieve semantic segmentation, data augmentation, and better classification algorithms, among other purposes. In addition, a collection of widely used public medical datasets containing magnetic resonance (MR) images, computed tomography (CT) scans, and common pictures is presented. Finally, we feature a summary of the current state of generative models in medical image including key features, current challenges, and future research paths.
Support vector machine (SVM) is a powerful technique for classification. However, SVM is not suitable for classification of large datasets or text corpora, because the training complexity of SVMs is highly dependent on the input size. Recent developments in the literature on the SVM and other kernel methods emphasize the need to consider multiple kernels or parameterizations of kernels because they provide greater flexibility. This paper shows a multikernel SVM to manage highly dimensional data, providing an automatic parameterization with low computational cost and improving results against SVMs parameterized under a brute-force search. The model consists in spreading the dataset into cohesive term slices (clusters) to construct a defined structure (multikernel).
The new approach is tested on different text corpora. Experimental results show that the new classifier has good accuracy compared with the classic SVM, while the training is significantly faster than several other SVM classifiers.
Summary Many real applications have the imbalanced class distribution problem, where one of the classes is represented by a very small number of cases compared to the other classes. One of the systems affected are those related to the recovery and classification of scientific documentation.Sampling strategies such as Oversampling and Subsampling are popular in tackling the problem of class imbalance. In this work, we study their effects on three types of classifiers (Knn, SVM and Naive-Bayes) when they are applied to search on the PubMed scientific database.Another purpose of this paper is to study the use of dictionaries in the classification of biomedical texts. Experiments are conducted with three different dictionaries (BioCreative, NLPBA, and an ad-hoc subset of the UniProt database named Protein) using the mentioned classifiers and sampling strategies.Best results were obtained with NLPBA and Protein dictionaries and the SVM classifier using the Subsampling balancing technique. These results were compared with those ob- tained by other authors using the TREC Genomics 2005 public corpus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.