Changes in the microstructure of nanostructured bainitic steel induced by quasi-static and dynamic deformation have been shown in the article. The method of deformation and strain rate have important impact on the microstructure changes especially due to strain localization. Microstructure of nanostructured steel Fe-0.6%C-1.9Mn-1.8Si-1.3Cr-0.7Mo consists of nanometer size carbide-free bainite laths and 20-30% volume fraction of retained austenite. Quasi-static and dynamic (strain rate up to 2×10 2 s -1 ) compression tests were realized using Gleeble simulator. Dynamic deformation at the strain rate up to 9×10 3 s -1 was realized by the Split Hopkinson Pressure Bar method (SHPB). Moreover high energy firing tests of plates made of the nanostructured bainitic steel were carried out to produce dynamically deformed material for investigation. Adiabatic shear bands were found as a result of localization of deformation in dynamic compression tests and in firing tests. Microstructure of the bands was examined and hardness changes in the vicinity of the bands were determined. The TEM examination of the ASBs showed the change from the internal shear band structure to the matrix structure to be gradual. This study clearly resolved that the interior (core) of the band has an extremely fine grained structure with grain diameter ranging from 100 nm to 200 nm. Martensitic twins were found within the grains. No austenite and carbide reflections were detected in the diffraction patterns taken from the core of the band. Hardness of the core of the ASBs for examined variants of isothermal heat treatment was higher about 300 HV referring to steel matrix hardness.
The aim of this work was to develop a novel bainitic steel that will be specifically dedicated to achieving a high degree of refinement (nano- or submicron scale) along with increased thermal stability of the structure at elevated temperatures. The material was characterized by improved in-use properties, expressed as the thermal stability of the structure, compared to nanocrystalline bainitic steels with a limited fraction of carbide precipitations. Assumed criteria for the expected low martensite start temperature, bainitic hardenability level, and thermal stability are specified. The steel design process and complete characteristics of the novel steel including continuous cooling transformation and time–temperature–transformation diagrams based on dilatometry are presented. Moreover, the influence of bainite transformation temperature on the degree of structure refinement and dimensions of austenite blocks was also determined. It was assessed whether, in medium-carbon steels, it is possible to achieve a nanoscale bainitic structure. Finally, the effectiveness of the applied strategy for enhancing thermal stability at elevated temperatures was analyzed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.