Experiments were performed in the highly turbulent and disturbed flow over a bluff plate with a long splitter plate in its plane of symmetry. The flow separates at the sharp bevelled edge of the bluff plate, forms a free shear layer on top of the reverse-flow region which is bounded on its other side by the splitter plate, and reattaches on the splitter plate over a narrow region curved in spanwise direction. Downstream of reattachment the shear flow adjusts slowly to the wall boundary conditions.Measurements of mean velocity, Reynolds-shear-stress and Reynolds-normal-stress distributions were carried out by hot-wire and pulsed-wire anemometry. The latter technique was used in those regions of the flow where reverse flow occurred or where the flow was highly turbulent. Spectra and integral lengthscales were measured to investigate the state and structure of the flow. The large-eddy structure in the inner region of the flow had lengthscales in the two cross-stream directions which were approximately equal, indicating a fast break-up of spanwise structures just downstream from separation.Mean and fluctuating quantities showed a self-similar behaviour in a short region upstream of reattachment and ‘profile similarity’ in the separated shear layer and along the splitter plate downstream from reattachment. Probability-density distributions of skin friction were measured and used to calculate mean and fluctuating values. No flapping of the reattaching shear layer could be observed. Pulsed-wire measurements revealed that the logarithmic law of the wall does not hold either in the reverse-flow region or in a region about half the length of the bubble downstream from reattachment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.