A successful pregnancy requires synchronized adaptation of maternal immune-endocrine mechanisms to the fetus. Here we show that galectin-1 (Gal-1), an immunoregulatory glycan-binding protein, has a pivotal role in conferring fetomaternal tolerance. Consistently with a marked decrease in Gal-1 expression during failing pregnancies, Gal-1-deficient (Lgals1-/-) mice showed higher rates of fetal loss compared to wild-type mice in allogeneic matings, whereas fetal survival was unaffected in syngeneic matings. Treatment with recombinant Gal-1 prevented fetal loss and restored tolerance through multiple mechanisms, including the induction of tolerogenic dendritic cells, which in turn promoted the expansion of interleukin-10 (IL-10)-secreting regulatory T cells in vivo. Accordingly, Gal-1's protective effects were abrogated in mice depleted of regulatory T cells or deficient in IL-10. In addition, we provide evidence for synergy between Gal-1 and progesterone in the maintenance of pregnancy. Thus, Gal-1 is a pivotal regulator of fetomaternal tolerance that has potential therapeutic implications in threatened pregnancies.
Implantation of mammalian embryos into their mother's uterus ensures optimal nourishment and protection throughout development. Complex molecular interactions characterize the implantation process, and an optimal synchronization of the components of this embryo-maternal dialogue is crucial for a successful reproductive outcome. In the present study, we investigated the role of dendritic cells (DC) during implantation process using a transgenic mouse system (DTRtg) that allows transient depletion of CD11c+ cells in vivo through administration of diphtheria toxin. We observed that DC depletion impairs the implantation process, resulting in a reduced breeding efficiency. Furthermore, the maturity of uterine natural killer cells at dendritic cell knockout (DCKO) implantation sites was affected as well; as demonstrated by decreased perforin expression and reduced numbers of periodic-acid-Schiff (PAS)-positive cells. This was accompanied by disarrangements in decidual vascular development. In the present study, we were also able to identify a novel DC-dependent protein, phosphatidylinositol transfer protein beta (PITPbeta), involved in implantation and trophoblast development using a proteomic approach. Indeed, DCKO mice exhibited substantial anomalies in placental development, including hypocellularity of the spongiotrophoblast and labyrinthine layers and reduced numbers of trophoblast giant cells. Giant cells also down-regulated their expression of two characteristic markers of trophoblast differentiation, placental lactogen 1 and proliferin. In view of these findings, dendritic cells emerge as possible modulators in the orchestration of events leading to the establishment and maintenance of pregnancy.
ErbB-2 amplification/overexpression accounts for an aggressive breast cancer (BC) subtype (ErbB-2-positive). Enhanced ErbB-2 expression was also found in gastric cancer (GC) and has been correlated with poor clinical outcome. The ErbB-2-targeted therapies trastuzumab (TZ), a monoclonal antibody, and lapatinib, a tyrosine kinase inhibitor, have proved highly beneficial. However, resistance to such therapies remains a major clinical challenge. We here revealed a novel mechanism underlying the antiproliferative effects of both agents in ErbB-2-positive BC and GC. TZ and lapatinib ability to block extracellular signal-regulated kinases 1/2 and phosphatidylinositol-3 kinase (PI3K)/AKT in sensitive cells inhibits c-Myc activation, which results in upregulation of miR-16. Forced expression of miR-16 inhibited in vitro proliferation in BC and GC cells, both sensitive and resistant to TZ and lapatinib, as well as in a preclinical BC model resistant to these agents. This reveals miR-16 role as tumor suppressor in ErbB-2-positive BC and GC. Using genome-wide expression studies and miRNA target prediction algorithms, we identified cyclin J and far upstream element-binding protein 1 (FUBP1) as novel miR-16 targets, which mediate miR-16 antiproliferative effects. Supporting the clinical relevance of our results, we found that high levels of miR-16 and low or null FUBP1 expression correlate with TZ response in ErbB-2-positive primary BCs. These findings highlight a potential role of miR-16 and FUBP1 as biomarkers of sensitivity to TZ therapy. Furthermore, we revealed miR-16 as an innovative therapeutic agent for TZ- and lapatinib-resistant ErbB-2-positive BC and GC.
Membrane overexpression of the receptor tyrosine kinase ErbB-2 (MErbB-2) accounts for a clinically aggressive breast cancer (BC) subtype (ErbB-2-positive) with increased incidence of metastases. We and others demonstrated that nuclear ErbB-2 (NErbB-2) also plays a key role in BC and is a poor prognostic factor in ErbB-2-positive tumors. The signal transducer and activator of transcription 3 (Stat3), another player in BC, has been recognized as a downstream mediator of MErbB-2 action in BC metastasis. Here, we revealed an unanticipated novel direction of the ErbB-2 and Stat3 interaction underlying BC metastasis. We found that Stat3 binds to its response elements (GAS) at the ErbB-2 promoter to upregulate ErbB-2 transcription in metastatic, ErbB-2-positive BC. We validated these results in several BC subtypes displaying metastatic and non-metastatic ability, highlighting Stat3 general role as upstream regulator of ErbB-2 expression in BC. Moreover, we showed that Stat3 co-opts NErbB-2 function by recruiting ErbB-2 as its coactivator at the GAS sites in the promoter of microRNA-21 (miR-21), a metastasis-promoting microRNA (miRNA). Using an ErbB-2 nuclear localization domain mutant and a constitutively activated ErbB-2 variant, we found that NErbB-2 role as a Stat3 coactivator and also its direct role as transcription factor upregulate miR-21 in BC. This reveals a novel function of NErbB-2 as a regulator of miRNAs expression. Increased levels of miR-21, in turn, downregulate the expression of the metastasis-suppressor protein programmed cell death 4 (PDCD4), a validated miR-21 target. Using an in vivo model of metastatic ErbB-2-postive BC, in which we silenced Stat3 and reconstituted ErbB-2 or miR-21 expression, we showed that both are downstream mediators of Stat3-driven metastasis. Supporting the clinical relevance of our results, we found an inverse correlation between ErbB-2/Stat3 nuclear co-expression and PDCD4 expression in ErbB-2-positive primary invasive BCs. Our findings identify Stat3 and NErbB-2 as novel therapeutic targets to inhibit ErbB-2-positive BC metastasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.