Carbon dots doped with sulfur and nitrogen (S,N-CDs) were utilised to design a paper-stripe based fluorescent probe for the detection of bilirubin. The S,N-CDs were synthesized through a microwave assisted route by using citric acid as carbon source and L-cysteine as a source of nitrogen and sulfur. The S,N-CDs exhibit bright blue fluorescence emission with a peak at 452 nm. Fluorescence is quenched by Fe(III) but selectively restored by bilirubin. The quenched fluorescent probe exhibit significant selectivity and sensitivity for bilirubin in the 0.2 nM to 2 nM concentration range, with a 0.12 nM detection limit. The method was applied to the determination of bilirubin in spiked human serum and urine samples. The method was used to design a paper based test stripe as a point of care device for visual bilirubin detection. Graphical abstract Schematic representation of sulphur and nitrogen doped carbon dots whose fluorescence is quenched by Fe(III) and turned on by bilirubin. Photograph of the corresponding system under day light and UV shows the feasibility of the phenomenon. The applicability of the assay was further extended by impregnating the probe on a filter paper.
We prepared cerium oxide nanoparticles having size range of 160 nm by using simple and effective sol-gel process and evaluated its wound healing potential. Quite interestingly we found that 2% nanoceria enhanced wound healing activity to a considerable extent which could be supported by increased amount of Hydroxylproline content (4.7 g/ml), wound tensile strength of 44.88 N/cm 2 and wound closure time, which are quite high when compared to other treated groups. Histopathology also showed no inflammation and increased amount of collagen production in group treated with 2% nanoceria. The prepared nanoparticles were characterized by SEM and XRD. The probable mechanism may be due to the dual oxidation state of cerium oxide which will help in scavenging ROS and reduce oxidative stress locally which is required for wound healing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.