The remarkable early to middle Eocene volcanic sequence of the Crescent Formation exposed on the Olympic Peninsula consists predominantly of tholeiitic to minor transitional alkaline basalts with sparse sedimentary interbeds. A composite section measured in the vicinity of the Dosewallips River includes 8.4 km of pillowed to massive submarine basalts overlain by 7.8 km of subaerial flows. An upper limit of about 48 Ma on the age of the Crescent basalts is indicated by faunal assemblages in sediments interbedded with the uppermost flows in the sequence and a circa 50 Ma 40Ar/39Ar age on a leucogabbro from the presumably correlative Bremerton Igneous Complex. Stratigraphically controlled samples collected from throughout the Crescent basalt sequence show that two distinctly different chemical types exist. The lower part of the sequence originated from a relatively depleted mantle course resembling normal (N) to enriched (E)‐MORB. The upper flows have a chemistry resembling E‐MORB to oceanic island tholeiites. This difference could be due to either variable metasomatism of a single source domain, or influx of a separate enriched‐mantle source component during the extrusion of the upper part of the sequence. Paleomagnetic measurements indicate that the Crescent basalts have not been significantly rotated, nor translated northwards since their extrusion. Paleotectonic reconstructions show that formation of the Crescent basalts and the Coast Range volcanic province as a whole coincided with a marked increase in the velocity of oblique convergence of the Kula plate with North America at about 60 Ma. Other geologic, geochemical, and paleomagnetic data are consistent with the interpretation that extrusion occurred in a basin or series of basins formed by a rift system along the continental margin of North America. Rifting might have been initiated by the influence of a hotspot, an increase in the rate of oblique convergence, or the kinematic effects of the Kula‐Farallon ridge as it migrated along the margin. If extrusion is related to the passage of the triple junction, then the Coast Ranges can be considered to be an important tectonic marker for early to middle Eocene plate reconstructions.
The 16 km thick early to middle Eocene Crescent Formation exposed on the Olympic Peninsula represents one of the thickest stacks of basalt on Earth. It is variably metamorphosed at low grade, with evidence of both medium-and high-P/T conditions. Metasomatism is localized within a small number of layers, with variation relative to average values of as much as five standard deviations. The upper section tends to be lower grade but few systematic trends in mineralogy or mineral composition correlate with stratigraphic position. The boundary region between the lower and upper members contains the most dramatic metasomatic alteration as well as the best examples of barroisitic amphibole. Observations are consistent with a model in which extrusion of the basalt stack led to medium-P/T burial recrystallization in the zeolite and prehnite-pumpellyite facies, followed by localized, possibly fluid-facilitated lower-blueschist facies metamorphism; this high-P/T metamorphism may reflect the lowering of isotherms caused by subduction-zone refrigeration to the west of these rocks.
The Abbotsford-Sumas Aquifer is a shallow, predominantly unconfined aquifer that spans regions in southwestern British Columbia, Canada and northwestern Washington, USA. The aquifer is prone to nitrate contamination because of extensive regional agricultural practices. A 22-month ground water nitrate assessment was performed in a 10-km2 study area adjacent to the international boundary in northwestern Washington to examine nitrate concentrations and nitrogen isotope ratios to characterize local source contributions from up-gradient sources in Canada. Nitrate concentrations in excess of 10 mg nitrate as nitrogen per liter (mg N L(-1)) were observed in ground water from most of the 26 domestic wells sampled in the study area, and in a creek that dissects the study area. The nitrate distribution was characteristic of nonpoint agricultural sources and consistent with the historical documentation of agriculturally related nitrate contamination in many parts of the aquifer. Hydrogeologic information, nitrogen isotope values, and statistical analyses indicated a nitrate concentration stratification in the study area. The highest concentrations (> 20 mg N L(-1)) occurred in shallow regions of the aquifer and were linked to local agricultural practices in northwestern Washington. Nitrate concentrations in excess of 10 mg N L(-1) deeper in the aquifer (> 10 m) were related to agricultural sources in Canada. The identification of two possible sources of ground water nitrate in northwestern Washington adds to the difficulty in assessing and implementing local nutrient management plans for protecting drinking water in the region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.