Articles you may be interested inIdentification of vacancy-oxygen complexes in oxygen-implanted silicon probed with slow positrons J. Appl. Phys. 95, 3404 (2004); 10.1063/1.1652241 Defects in silicon-on-insulator wafers and their hydrogen interaction studied by monoenergetic positron beams
The interaction of helium atoms with the radiation damage imparted to (100) silicon single crystal by He+ implantation at 5×1015 cm−2, 20 keV, and liquid–nitrogen temperature is investigated by means of various complementary techniques during and after thermal treatments. Thermal programmed desorption was used to study the dissociation kinetics of helium from the defects and to plan suitable heat treatments for the other techniques. The helium profiles were determined by 8 MeV N2+15 elastic recoil detection, quantitative data on damage were obtained by channeling Rutherford backscattering spectrometry, double crystal x-ray diffraction, and positron annihilation spectroscopy. Isothermal treatments at 250 °C produce first helium redistribution and trapping in vacancy-like defects, rather than helium desorption from traps. The process is thermally activated with an effective activation energy, dispersed in a band from 1.1 to about 1.7 eV. For higher temperature treatments (2 h at 500 °C) the traps are almost emptied and at 700 °C all vacancy-like defects are annealed out. No bubbles or voids are observed by transmission electron microscopy, either in the as-implanted or in annealed samples.
Silicon-rich silicon oxide films were deposited by plasma-enhanced chemical vapor deposition. Energy was released into the film by ion bombardment, with the aim of promoting formation of Si nanoclusters and reordering the oxide matrix. The effect of the initial stoichiometry, as well as the evolution of the oxide films due to the ion bombardment and to subsequent thermal treatments, has been studied by depth-resolved positron annihilation Doppler spectroscopy, Raman scattering and Fourier transform infrared spectroscopy. As-deposited films were found to contain an open volume fraction in the form of subnanometric cavities that are positively correlated with oxygen deficiency. No Si aggregates were observed. The ion bombardment was found to promote the formation of amorphous Si nanoclusters, together with a reduction of the open volume in the matrix and a substantial release of hydrogen. It also leaves electrically active sites in the oxide and produces gas-filled vacancy defects in the substrate, with the concentrations depending on the implantation temperature. Thermal treatment at 500 °C removes charge defects in the oxide, but vacancy defects are not completely annealed even at 1100 °C. In one case, heating at 1100 °C produced cavities of about 0.6 nm in the oxide. Transformation of Si nanoclusters into nanocrystals is observed to occur from 800 °C.
Open volume defect profiles have been obtained by performing Doppler broadening measurements with a slow positron beam on p-type Si samples implanted near liquid nitrogen temperature with He ions at 20 keV and at 5×1015 and 2×1016 cm−2 fluence. The evolution of the defect profiles was studied as a function of isothermal annealing at 250 °C. The fraction of released He was measured by thermal programmed desorption. The defects could be identified as a coexistence of monovacancies stabilized by He-related defects and divacancies. The number of defects decreases for annealing time of a few minutes, then increases at longer annealing times. The mean depth of the defect profiles in the as-implanted samples was found to be very near the surface. After annealing, the mean depth increases to less than one half of the projected He range. This complex dynamics has been interpreted as due to passivation of vacancies by He during the implantation process and the first annealing step when no appreciable He is lost, and to subsequent depassivation during He desorption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.