Summary Worldwide, conservation agriculture practices involving minimal soil disturbances and retention of crop residue (>30%) have been practised increasingly and recognized to enhance soil health by optimizing key soil attributes. However, little information is available on the short‐term effects of conservation agriculture practices on soil properties under rainfed Vertisols of Central India. Thus, our aim was to study the short‐term effects of contrasting tillage treatments and cropping systems on soil aggregation, aggregate‐associated carbon (C), carbon pools and crop productivity. This study comprised three tillage systems (TS), reduced tillage (RT), no tillage (NT) with retention of crop residue and conventional tillage (CT), together with four cropping systems (CS), namely soya bean (Glycine max L.) + pigeon pea (Cajanus cajan L.) (2:1), soya bean–wheat (Titricum durum L.), maize (Zea mays L.) + pigeon pea (1:1), and maize–chickpea Cicer arietinum L.). The experiment was laid out in a split‐plot design with three replicates. Soil samples were collected at four depths: 0–5, 5–15, 15–30 and 30–45 cm from the experimental field after completion of four crop cycles. Results indicated that at depths 0–5 and 5–15 cm, tillage and cropping system had a significant effect on aggregate mean weight diameter (MWD). The MWDs of 0.97 and 0.94 mm were larger for NT than CT (0.77 and 0.83 mm) at 0–5‐ and 5–15‐cm depths, respectively. Water‐stable aggregates (WSAs) were also larger for NT (70.74%) and RT (70.09%) than CT (59.50%) at 0–5 cm. Tillage practice, cropping system and their interaction had a greater effect (P < 0.05) on the content of aggregate‐associated C for large macroaggregates (LM). There was more aggregate‐associated C for NT and RT at 0–5‐cm depth than for CT. Cropping system also had a significant effect (P < 0.05) on aggregate‐associated C at 0–5‐cm depth. Soil organic C (%) fractions were in the order of non‐labile >very labile >less labile >labile for 0–5‐ and 5–15‐cm depths after four crop cycles. Less labile and non‐labile C fractions contributed >50% of TOC, indicating a more recalcitrant form of carbon present in the soil. Tillage had no significant effect (P > 0.05) on crop yields after four crop cycles. Conservation agriculture can have a positive effect on aggregate stability, aggregate‐associated C and different carbon pools in a Vertisol. Highlights Does conservation agriculture affect soil aggregation, aggregate stability and carbon pools more than conventional tillage? The SOC concentration increases with aggregate size and provides physical protection and stabilization of carbon (C). Aggregate‐associated C content was significantly affected by tillage practices and cropping system. Less labile and non‐labile C fractions contribute >50% TOC in the rainfed Vertisols of central India.
Of late, intensive farming for higher food production is often associated with many negative implications for soil systems, such as decline of soil organic matter (SOM), increase in risks of soil erosion by wind and/or water, decline in soil biological diversity, increase in degradation of soil physical quality, lower nutrient-use efficiency, high risks of groundwater pollution, falling water tables, increasing salinization and waterlogging, in-field burning of crop residues, pollution of air and emission of greenhouse gases (GHG), leading to global warming, and decline in factor productivity. These negative implications necessitate an objective review of strategies to develop sustainable management practices, which could not only sustain soil health and ensure food security, but also enhance carbon sequestration, decrease GHG emissions, and offer clean and better ecosystem services. Conservation agriculture (CA), that includes reduced or no-till practices along with crop residue retention and mixed crop rotations, offers multiple benefits. Adoption of a system-based CA conserves water, improves and creates more efficient use of natural resources through the integrated management of available soil nutrients, water, and biological resources, and enhances use efficiency of external inputs. Due to apparent benefits of CA, it is increasingly being adopted and now covers about 180 million hectares (Mha) worldwide. However, in South Asia its spread is low (<5 Mha), mostly concentrated in the Indo-Gangetic Plains (IGP). In this region, one of the serious issues is "residue burning" with severe environmental impacts. A huge amount of crop residue left over after the combine harvest of rice has forced farmers to practice widespread residue burning ($140 M tonnes) to cope with excessive stubble and also for timely planting/sowing of succeeding crops. In rice-wheat cropping systems, which cover more than 10 Mha in the IGP, CA practices are relatively more accepted by farmers. In these systems, any delay in sowing leads to yield penalty of 1-1.5% per day after the optimum sowing date of wheat. The strong adoption of CA practices in IGP is mainly to overcome delayed sowing due to the field preparation and control of weeds, timely planting, and also escape from terminal heat during the grain-filling stage. Major challenges to CA adoption in South Asia are small land holdings (<1 ha), low technological reach to farmers, nonavailability of suitable farm implements for small farm holders, and the staunch conventional farming mind-set. South Asia region consists of many countries of diverse agro-ecologies with contrasting farming systems and management. This region, recently known for rapid economic growth and increasing population, necessitates higher food production and also hot-spots for adoption of CA technologies. Therefore, in this review critically explores the possibility, extent of area, prospects, challenges, and benefits of CA in South Asia. HIGHLIGHTS Conservation agriculture (CA), consisting of reduced or no-tillage a...
Summary Wastes generated from municipal and agricultural activities have the tremendous potential for application in agriculture as a source of nutrients and as amendments to improve soil organic matter (SOM). A decline in SOM can represent a serious threat to soil fertility and quality. Nitrogen (N) mineralization from organic amendments is important for understanding the N dynamics in terrestrial ecosystems. In this review, quality of the amendments such as C/N ration, N content, and biochemical compositions, etc. are discussed. Since, C/N ratio cannot explain all differences in N mineralization; emphasis has been laid on characterizing different compounds in organic amendments that govern the mineralization process. The importance of simulation models has also been described in modeling N mineralization from some complex materials like compost, animal manures and farmyard manures. These complex simulation models once modified according to the quality of the organic amendments can simulate N mineralization and thus, they can be used for simulating N dynamics in terrestrial eco-systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.