Diamond-like carbon (DLC) films were deposited on tungsten tips under KrF excimer laser irradiation in benzene solution. The deposition process was found to be highly dependent on tip sharpness. Tips with larger curvature radii and smaller aspect ratios could not be coated with DLC films under the same condition as that for sharp tips. Raman spectra showed that more sp3 tetrahedral structures were present in the DLC films on a tip with a smaller curvature radius. Simulation results showed that the tip sharpness dependent local optical enhancement played an important role in the DLC deposition process. An optical field gradient from apex to tip body was also found in the simulation. We suggest that there are two modes in the process of DLC deposition on nanotips under different laser fluences, i.e., local apex DLC deposition under low laser fluences and phase-graded DLC deposition under high laser fluences.
Diamond-like carbon (DLC) films were deposited on tungsten (W) tips under the KrF excimer laser in a laser chemical vapor deposition (LCVD) chamber. Raman spectroscopy showed that the deposited DLC films were phase-graded along the tips from the apexes. The DLC films were more diamondlike at or near the tip apexes. From numerical simulation, there is a strongly confined and enhanced optical field at the tip apexes. The simulation also indicates that there is an optical-field gradient from tip apexes to tip bodies. Therefore, the variations in the phases of deposited DLC films were attributed to the corresponding variations in local optical intensities along the tips. Hence, optical local near field was confirmed to be responsible to the DLC deposition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.