A multi- high-frequency electron paramagnetic resonance method is used to probe the magnetic excitations of a dimer of single-molecule magnets. The measured spectra display well-resolved quantum transitions involving coherent superposition states of both molecules. The behavior may be understood in terms of an isotropic superexchange coupling between pairs of single-molecule magnets, in analogy with several recently proposed quantum devices based on artificially fabricated quantum dots or clusters. These findings highlight the potential utility of supramolecular chemistry in the design of future quantum devices based on molecular nanomagnets.
This paper investigates Rayleigh wave interaction with simulated, surface breaking cracks using a finite element method, in which the scattered wave modes giving rise to the in-plane and out-of-plane displacements are presented. By looking at the contribution from all of the transmitted, reflected, and mode-converted signals at the crack, the magnitude of signal enhancement in the near field and the mechanism by which this occurs can be fully explained. Furthermore, oscillations in the Rayleigh wave reflection and transmission coefficients with crack depth in the far field can be explained by means of multiple reflected and transmitted wave modes at the crack, whose relative amplitudes are dependent on the crack depth. Results agree with previously published experimental measurements.
We present detailed angle-dependent single crystal electron paramagnetic resonance (EPR) data for field rotations in the hard plane of the S=10 single molecule magnet Mn(12)-acetate. A clear fourfold variation in the resonance positions may be attributed to an intrinsic fourth-order transverse anisotropy (O(4)/(4)). Meanwhile, a fourfold variation of the EPR line shapes confirms a recently proposed model wherein disorder associated with the acetic acid of crystallization induces a locally varying quadratic (rhombic) transverse anisotropy [O (2)/(2) identical with E(S (2)/(x)-S(2)/(y))]. These findings explain most aspects of the magnetic quantum tunneling observed in Mn(12)-acetate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.