Electromagnetic Ion Cyclotron (EMIC) waves cause electron loss in the radiation belts by resonating with high-energy electrons at energies greater than about 500 keV. However, their effectiveness has not been fully quantified. Here we determine the effectiveness of EMIC waves by using wave data from the fluxgate magnetometer on CRRES to calculate bounce-averaged pitch angle and energy diffusion rates for L * = 3.5-7 for five levels of Kp between 12 and 18 MLT. To determine the electron loss, EMIC diffusion rates were included in the British Antarctic Survey Radiation Belt Model together with whistler mode chorus, plasmaspheric hiss, and radial diffusion. By simulating a 100 day period in 1990, we show that EMIC waves caused a significant reduction in the electron flux for energies greater than 2 MeV but only for pitch angles lower than about 60• . The simulations show that the distribution of electrons left behind in space looks like a pancake distribution. Since EMIC waves cannot remove electrons at all pitch angles even at 30 MeV, our results suggest that EMIC waves are unlikely to set an upper limit on the energy of the flux of radiation belt electrons.
Gyroresonant wave-particle interactions with electromagnetic ion cyclotron (EMIC) waves are a potentially important loss process for relativistic electrons in the Earth's radiation belts. Here we perform a statistical analysis of the EMIC waves observed by the Combined Release and Radiation Effects Satellite (CRRES) to determine the global morphology and spectral properties of the waves and to help assess their role in radiation belt dynamics. Helium band EMIC waves, with intensities, B 2 w , greater than 0.1 nT 2 , are most prevalent during active conditions (AE > 300 nT), from 4 < L * < 7 in the afternoon sector, with an average percentage occurrence of 2.7%. Hydrogen band EMIC wave events, with intensities greater than 0.1 nT 2 , are also most prevalent in the afternoon sector during active conditions in the same region, but they are less frequent with an average percentage occurrence of 0.6%. The average intensity of the helium and hydrogen band EMIC waves in the region 4 < L * < 7 in the afternoon sector during active conditions is 2 nT 2 and 0.5 nT 2 , respectively, and suggests that the waves can cause strong diffusion. However, the time-averaged properties are very different, being a factor of 30-50 lower for helium and hydrogen band EMIC waves, respectively, suggesting that the overall effect will be correspondingly weaker. Nevertheless, the moderate and strong EMIC wave events with B 2 w > 0.1 nT 2 reported on here will contribute to relativistic electron loss in the Earth's radiation belts and should be included in radiation belt models.
[1] Electromagnetic ion cyclotron (EMIC) waves may contribute to ring current ion and radiation belt electron losses, and theoretical studies suggest these processes may be most effective during the main phase of geomagnetic storms. However, ground-based signatures of EMIC waves, Pc1-Pc2 geomagnetic pulsations, are observed more frequently during the recovery phase. We investigate the association of EMIC waves with various storm phases in case and statistical studies of 22 geomagnetic storms over 1996-2003, with an associated Dst < −30 nT. High-resolution data from the GOES 8, 9, and 10 geosynchronous satellite magnetometers provide information on EMIC wave activity in the 0-1 Hz band over ±3 days with respect to storm onset, defined as commencement of the negative excursion of Dst. Thirteen of 22 storms showed EMIC waves occurring during the main phase. In case studies of two storms, waves were seen with higher intensity in the main phase in one and the recovery phase in the other. Power spectral densities up to 500 nT 2 Hz −1 were similar in prestorm, storm, and early recovery phases. Superposed epoch analysis of the 22 storms shows 78% of wave events during the main phase occurred in the He + band. After storm onset the main phase contributed only 29% of events overall compared to 71% during recovery phase, up to 3 days. Some differences between storms were found to be dependent on the solar wind driver. Plasma plumes or an inflated plasmasphere may contribute to enhancing EMIC wave activity at geosynchronous orbit.
[1] The equatorial plasma density and composition at L = 2.5 were studied during an extended disturbed interval using field line resonance measurements (yielding plasma mass density), naturally and artificially stimulated VLF whistlers (electron number density) and IMAGE EUV observations (plasmapause position and line-of-sight He + intensity). During the storm the plasmapause moved to L < 2.5 and at least one density notch and drainage plume formed. These features were evident in all the data sets for some days. One notch extended from 2.4-4.5 R E and spanned <4 hours in MLT. Plume mass and electron densities were enhanced by a factor of about 3. In the plasmasphere and plasmatrough the H + : He +
The plasmapause is a highly dynamic boundary between different magnetospheric particle populations and convection regimes. Some of the most important space weather processes involve wave-particle interactions in this region, but wave properties may also be used to remote sense the plasmasphere and plasmapause, contributing to plasmasphere models. This paper discusses the use of existing ground magnetometer arrays for such remote sensing. Using case studies we illustrate measurement of plasmapause location, shape and movement during storms; refilling of flux tubes within and outside the plasmasphere; storm-time increase in heavy ion concentration near the plasmapause; and detection and mapping of density irregularities near the plasmapause, including drainage plumes, biteouts and bulges. We also use a 2D MHD model of wave propagation through the magnetosphere, incorporating a realistic ionosphere boundary and Alfvén speed profile, to simulate ground array observations of power and cross-phase spectra, hence confirming the signatures of plumes and other density structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.