Nitrogen oxides are essential for the formation of secondary atmospheric aerosols and of atmospheric oxidants such as ozone and the hydroxyl radical, which controls the self-cleansing capacity of the atmosphere. Nitric acid, a major oxidation product of nitrogen oxides, has traditionally been considered to be a permanent sink of nitrogen oxides. However, model studies predict higher ratios of nitric acid to nitrogen oxides in the troposphere than are observed. A 'renoxification' process that recycles nitric acid into nitrogen oxides has been proposed to reconcile observations with model studies, but the mechanisms responsible for this process remain uncertain. Here we present data from an aircraft measurement campaign over the North Atlantic Ocean and find evidence for rapid recycling of nitric acid to nitrous acid and nitrogen oxides in the clean marine boundary layer via particulate nitrate photolysis. Laboratory experiments further demonstrate the photolysis of particulate nitrate collected on filters at a rate more than two orders of magnitude greater than that of gaseous nitric acid, with nitrous acid as the main product. Box model calculations based on the Master Chemical Mechanism suggest that particulate nitrate photolysis mainly sustains the observed levels of nitrous acid and nitrogen oxides at midday under typical marine boundary layer conditions. Given that oceans account for more than 70 per cent of Earth's surface, we propose that particulate nitrate photolysis could be a substantial tropospheric nitrogen oxide source. Recycling of nitrogen oxides in remote oceanic regions with minimal direct nitrogen oxide emissions could increase the formation of tropospheric oxidants and secondary atmospheric aerosols on a global scale.
Dimethyl sulfide (DMS), emitted from the oceans, is the most abundant biological source of sulfur to the marine atmosphere. Atmospheric DMS is oxidized to condensable products that form secondary aerosols that affect Earth’s radiative balance by scattering solar radiation and serving as cloud condensation nuclei. We report the atmospheric discovery of a previously unquantified DMS oxidation product, hydroperoxymethyl thioformate (HPMTF, HOOCH2SCHO), identified through global-scale airborne observations that demonstrate it to be a major reservoir of marine sulfur. Observationally constrained model results show that more than 30% of oceanic DMS emitted to the atmosphere forms HPMTF. Coincident particle measurements suggest a strong link between HPMTF concentration and new particle formation and growth. Analyses of these observations show that HPMTF chemistry must be included in atmospheric models to improve representation of key linkages between the biogeochemistry of the ocean, marine aerosol formation and growth, and their combined effects on climate.
DC3 brought together simultaneous measurements of storm kinematics, structure, electrical activity, and chemistry to improve our knowledge of how thunderstorms affect the chemical composition of the troposphere.
Halogens in the troposphere are increasingly recognized as playing an important role for atmospheric chemistry, and possibly climate. Bromine and iodine react catalytically to destroy ozone (O 3 ), oxidize mercury, and modify oxidative capacity that is relevant for the lifetime of greenhouse gases. Most of the tropospheric O 3 and methane (CH 4 ) loss occurs at tropical latitudes. Here we report simultaneous measurements of vertical profiles of bromine oxide (BrO) and iodine oxide (IO) in the tropical and subtropical free troposphere (10°N to 40°S), and show that these halogens are responsible for 34% of the column-integrated loss of tropospheric O 3 . The observed BrO concentrations increase strongly with altitude (∼3.4 pptv at 13.5 km), and are 2-4 times higher than predicted in the tropical free troposphere. BrO resembles model predictions more closely in stratospheric air. The largest model low bias is observed in the lower tropical transition layer (TTL) over the tropical eastern Pacific Ocean, and may reflect a missing inorganic bromine source supplying an additional 2.5-6.4 pptv total inorganic bromine (Br y ), or model overestimated Br y wet scavenging. Our results highlight the importance of heterogeneous chemistry on ice clouds, and imply an additional Br y source from the debromination of sea salt residue in the lower TTL. The observed levels of bromine oxidize mercury up to 3.5 times faster than models predict, possibly increasing mercury deposition to the ocean. The halogen-catalyzed loss of tropospheric O 3 needs to be considered when estimating past and future ozone radiative effects.atmospheric chemistry | oxidative capacity | halogens | heterogeneous chemistry | UTLS T ropospheric halogens catalytically destroy O 3 (1−3), oxidize atmospheric mercury (4, 5), and modify the oxidative capacity of the atmosphere (6). O 3 is a potent greenhouse gas (7), and an important precursor for hydroxyl (OH) radicals (6, 8) that determine the lifetime of CH 4 another important greenhouse gas. About 75% of the global tropospheric O 3 (3) and CH 4 (8) loss occurs at tropical latitudes, where O 3 radiative forcing is also most sensitive to changes in O 3 (9). Halogen chemistry is thought responsible for ∼10% of the tropical tropospheric O 3 column loss (3), yet atmospheric models remain essentially untested due to the lack of vertically resolved halogen radical measurements in the tropical troposphere. Column observations from ground and satellites (10−18), including measurements in the tropics (14, 16−18), point to the existence of a-possibly ubiquitous-tropospheric BrO background concentration of ∼1−2 parts per trillion by volume (pptv) that currently remains unexplained by models, and would be of significant relevance for O 3 , OH, and mercury oxidation (2−6, 8). Recently, corroborating evidence is emerging from a measurement in the tropical free troposphere (FT) (19). IO has been detected in the Northern Hemisphere (NH) FT (19−21), but there is currently no vertically resolved measurement of BrO or IO in the ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.