In standard fractal terrain models based on fractional Brownian motion the statistical character of the surface is, by design, the same everywhere. A new approach to the synthesis of fractal terrain height fields is presented which, in contrast to previous techniques, features locally independent control of the frequencies composing the surface, and thus local control of fractal dimension and other statistical characteristics. The new technique, termed noise synthesis, is intermediate in difficulty of implementation, between simple stochastic subdivision and Fourier filtering or generalized stochastic subdivision, and does not suffer the drawbacks of creases or periodicity. Varying the local crossover scale of fractal character or the fractal dimension with altitude or other functions yields more realistic first approximations to eroded landscapes. A simple physical erosion model is then suggested which simulates hydraulic and thermal erosion processes to create global stream/valley networks and talus slopes. Finally, an efficient ray tracing algorithm for general height fields, of which most fractal terrains are a subset, is presented.
In standard fractal terrain models based on fractional Brownian motion the statistical character of the surface is, by design, the same everywhere. A new approach to the synthesis of fractal terrain height fields is presented which, in contrast to previous techniques, features locally independent control of the frequencies composing the surface, and thus local control of fractal dimension and other statistical characteristics. The new technique, termed noise synthesis , is intermediate in difficulty of implementation, between simple stochastic subdivision and Fourier filtering or generalized stochastic subdivision, and does not suffer the drawbacks of creases or periodicity. Varying the local crossover scale of fractal character or the fractal dimension with altitude or other functions yields more realistic first approximations to eroded landscapes. A simple physical erosion model is then suggested which simulates hydraulic and thermal erosion processes to create gloabl stream/valley networks and talus slopes. Finally, an efficient ray tracing algorithm for general height fields, of which most fractal terrains are a subset, is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.