The paper presents the results of investigation on physical, mechanical and wear properties of SiC particulate reinforced aluminium metal matrix composite. The influence of reinforced ratios of 10, 15 and 20 wt. % of SiCp on mechanical properties and wear characters was examined. The effect of load and sliding velocity on wear behavior of composite was studied. It was observed that increase of weight fraction of reinforcement produced better physical and mechanical properties such as density and hardness with 37 µm SiC reinforced composite inspite of increased density the hardness drops above the critical sintering temperature of 550°C due to crazing of the matrix. With increased size of SiCp especially with higher temperature, density and hardness doesn’t supplement each other. Possible pooling/agglomeration in the case of medium and coarse sized reinforcement account for this. Wear decreases with increase in sintering temperature for 23 and 37 µm SiCp reinforced composites where as it increases for 67 µm SiCp reinforced composites. This could be attributed to formation of silanium compound contributing to discrete hardening of matrix. Wear tends to drop with sliding velocity being less contact between the pin and the disc but increases with normal load acting on the composite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.