A mathematical model of snow-cover influence on soil freezing, taking into account the phase transition layer, water migration in soil, frost heave and ice-layer formation, has been developed. The modeled results are in good agreement with data observed in natural conditions. The influence of a possible delay between the time of negative temperature establishment in the air and the beginning of snow accumulation, and possible variations of the thermophysical properties of snow cover in the wide range previously reported were investigated by numerical experiments. It was found that the delay could change the frozen-soil depth up to 2–3 times, while different thermophysical characteristics of snow changed the resulting freezing depth 4–5 times.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.