The mutual interaction of two oscillating gas bubbles in different concentrations of sulfuric acid is numerically investigated. A nonlinear oscillation for spherical symmetric bubbles with equilibrium radii smaller than 10 μm at a frequency of 37 kHz in a strong driving acoustical field P(a)=1.8 bar is assumed. The calculations are based on the investigation of the secondary Bjerknes force with regard to adiabatic model for the bubble interior which appears as repulsion or attraction interaction force. In this work the influence of the various concentrations of sulfuric acid in uncoupled and coupled distances between bubbles has been investigated. It is found that the sign and value of the secondary Bjerknes force depend on the sulfuric acid viscosity and its amount would be decreased by liquid viscosity enhancement. The results show that big change in the parameters of produced bubbles occurs in the sulfuric acid with concentrations from 65% to 85%.
Specific studies were performed in order to increase the thickness of laser generated directed space charge quasineutral plasma blocks with anomalously high ion current densities above 1011 A/cm2. This may lead to an alternative scheme of laser driven fusion with the irradiation of petawatt-picosecond laser pulses. Initial electron densities were used with Rayleigh profiles, because these are unique for inhomogeneous plasmas for undistorted acceleration at very low reflectivity until thermal absorption processes disturb these ideal conditions. Numerical hydrodynamic results based on a genuine two-fluid code are presented to optimize the block generation for possible fast ignition and details show the delay of thermal exchange between the ion and electron plasma fluid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.