Using the latest cosmological hydrodynamic N-body simulations of groups and clusters, we study how location in phase-space coordinates at z=0 can provide information on environmental effects acting in clusters. We confirm the results of previous authors showing that galaxies tend to follow a typical path in phase-space as they settle into the cluster potential. As such, different regions of phase-space can be associated with different times since first infalling into the cluster. However, in addition, we see a clear trend between total mass loss due to cluster tides, and time since infall. Thus we find location in phase-space provides information on both infall time, and tidal mass loss. We find the predictive power of phase-space diagrams remains even when projected quantities are used (i.e. line-of-sight velocities, and projected distances from the cluster). We provide figures that can be directly compared with observed samples of cluster galaxies and we also provide the data used to make them as supplementary data, in order to encourage the use of phase-space diagrams as a tool to understand cluster environmental effects. We find that our results depend very weakly on galaxy mass or host mass, so the predictions in our phase-space diagrams can be applied to groups or clusters alike, or to galaxy populations from dwarfs up to giants.
We present the Pristine survey, a new narrow-band photometric survey focused on the metallicity-sensitive Ca H & K lines and conducted in the northern hemisphere with the wide-field imager MegaCam on the Canada-France-Hawaii Telescope (CFHT). This paper reviews our overall survey strategy and discusses the data processing and metallicity calibration. Additionally we review the application of these data to the main aims of the survey, which are to gather a large sample of the most metal-poor stars in the Galaxy, to further characterise the faintest Milky Way satellites, and to map the (metal-poor) substructure in the Galactic halo. The current Pristine footprint comprises over 1,000 deg 2 in the Galactic halo ranging from b ∼ 30 • to ∼ 78 • and covers many known stellar substructures. We demonstrate that, for SDSS stellar objects, we can calibrate the photometry at the 0.02-magnitude level. The comparison with existing spectroscopic metallicities from SDSS/SEGUE and LAMOST shows that, when combined with SDSS broad-band g and i photometry, we can use the CaHK photometry to infer photometric metallicities with an accuracy of ∼0.2 dex from [Fe/H] = −0.5 down to the extremely metal-poor regime ([Fe/H] < −3.0). After the removal of various contaminants, we can efficiently select metal-poor stars and build a very complete sample with high purity. The success rate of uncovering [Fe/H] SEGUE < −3.0 stars among [Fe/H] Pristine < −3.0 selected stars is 24% and 85% of the remaining candidates are still very metal poor ([Fe/H]< −2.0). We further demonstrate that Pristine is well suited to identify the very rare and pristine Galactic stars with [Fe/H] < −4.0, which can teach us valuable lessons about the early Universe. . The observations at the Canada-France-Hawaii Telescope were performed with care and respect from the summit of Maunakea which is a significant cultural and historic site.†
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.