This paper explores the finite-time synchronization problem of delayed complex valued neural networks with time invariant uncertainty through improved integral sliding mode control. Firstly, the master-slave complex valued neural networks are transformed into two real valued neural networks through the method of separating the complex valued neural networks into real and imaginary parts. Also, the interval uncertainty terms of delayed complex valued neural networks are converted into the real uncertainty terms. Secondly, a new integral sliding mode surface is designed by employing the master-slave concept and the synchronization error of master-slave systems such that the error system can converge to zero in finite-time along the constructed integral sliding mode surface. Next, a suitable sliding mode control is designed by using Lyapunov stability theory such that state trajectories of the system can be driven onto the pre-set sliding mode surface in finite-time. Finally, a numerical example is presented to illustrate the effectiveness of the theoretical results.
This paper deals with the problem of finite-time projective synchronization for a class of neutral-type complex-valued neural networks (CVNNs) with time-varying delays. A simple state feedback control protocol is developed such that slave CVNNs can be projective synchronized with the master system in finite time. By employing inequalities technique and designing new Lyapunov--Krasovskii functionals, various novel and easily verifiable conditions are obtained to ensure the finite-time projective synchronization. It is found that the settling time can be explicitly calculated for the neutral-type CVNNs. Finally, two numerical simulation results are demonstrated to validate the theoretical results of this paper.
In this article, we investigate the problem of finite-time passivity for the complex-valued neural networks (CVNNs) with multiple time-varying delays. To begin, many definitions relevant to the finite-time passivity of CVNNs are provided; then the suitable control inputs are designed to guarantee the class of CVNNs are finite-time passive. In the meantime, some sufficient conditions of linear matrix inequalities (LMIs) are derived by using inequalities techniques and Lyapunov stability theory. Finally, a numerical example is presented to illustrate the usefulness of the theoretical results.
<abstract><p>In cluster synchronization (CS), the constituents (i.e., multiple agents) are grouped into a number of clusters in accordance with a function of nodes pertaining to a network structure. By designing an appropriate algorithm, the cluster can be manipulated to attain synchronization with respect to a certain value or an isolated node. Moreover, the synchronization values among various clusters vary. The main aim of this study is to investigate the asymptotic and CS problem of coupled delayed complex-valued neural network (CCVNN) models along with leakage delay in finite-time (FT). In this paper, we describe several sufficient conditions for asymptotic synchronization by utilizing the Lyapunov theory for differential systems and the Filippov regularization framework for the realization of finite-time synchronization of CCVNNs with leakage delay. We also propose sufficient conditions for CS of the system under scrutiny. A synchronization algorithm is developed to indicate the usefulness of the theoretical results in case studies.</p></abstract>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.