A highly challenging aspect of the data compression technique is maintaining the quality of data that reconstructs in high compression rates. To overcome these limitations, a bilateral anisotropic Gabor wavelet transformation with deep stacked auto encoding (BAGWT-DSAE) technique based lossesless image compression is proposed in this article to save the storage space and processing time during transferring the images. The proposed method contains three main processes namely preprocessing, compression and decompression. Initially input aerial image and digital image are taken and these images are given bilateral filter based preprocessing for eliminates the different types of noises and also multiple artifacts. Then the preprocessed images are given to anisotropic Gabor wavelet transformation based deep stacked auto encoding to compress and decompress the wavelet transform's sensitive sub-bands effectually. In DSAE, the decoder of the auto encoder achieves a better quality decompressed image. The proposed method is implemented in MATLAB simulations run in
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.