The work focuses on developing the complex digital shadow of the metallic material microstructure that can predict its evolution during metal forming operations. Therefore, such a digital shadow has to consider all major physical mechanisms influencing the particular investigated phenomenon. The motivation for the work is directly related to the development of modern metallic materials, often of multiphase nature. Such microstructure types lead to local heterogeneities influencing material behaviour and eventually macroscopic properties of the final product. The concept of the digital material shadow, stages of the model development, and examples of practical applications to simulation of microstructure evolution are presented within the work. Capturing local heterogeneities that have a physical origin and eliminating numerical artefacts is particularly addressed. Obtained results demonstrate the capabilities of such a digital microstructure shadow approach in the numerical design of final product properties.
Abstract. The efficiency of the air bio-purification from the mixture of two volatile organic compounds (styrene and p-xylene) was studied. The process was carried out in a pilot-scale trickle-bed bioreactor installation designed to purify ~200 m
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.