The planned expansion of biofuel plantations in Brazil could potentially cause both direct and indirect land-use changes (e.g., biofuel plantations replace rangelands, which replace forests). In this study, we use a spatially explicit model to project land-use changes caused by that expansion in 2020, assuming that ethanol (biodiesel) production increases by 35 (4) x 10 9 liter in the 2003-2020 period. Our simulations show that direct land-use changes will have a small impact on carbon emissions because most biofuel plantations would replace rangeland areas. However, indirect land-use changes, especially those pushing the rangeland frontier into the Amazonian forests, could offset the carbon savings from biofuels. Sugarcane ethanol and soybean biodiesel each contribute to nearly half of the projected indirect deforestation of 121,970 km 2 by 2020, creating a carbon debt that would take about 250 years to be repaid using these biofuels instead of fossil fuels. We also tested different crops that could serve as feedstock to fulfill Brazil's biodiesel demand and found that oil palm would cause the least land-use changes and associated carbon debt. The modeled livestock density increases by 0.09 head per hectare. But a higher increase of 0.13 head per hectare in the average livestock density throughout the country could avoid the indirect land-use changes caused by biofuels (even with soybean as the biodiesel feedstock), while still fulfilling all food and bioenergy demands. We suggest that a closer collaboration or strengthened institutional link between the biofuel and cattle-ranching sectors in the coming years is crucial for effective carbon savings from biofuels in Brazil.B razil's government and biofuel industry are planning a large increase in the production of biofuels in the next 10 years. This increase is driven by internal and external market demand (ethanol), as well as by government-enforced blending (biodiesel) (1-3). Although Brazilian sugarcane ethanol is often considered to have one of the best production systems with respect to carbon savings (4-8), there are concerns about the land-use changes (LUC) that would be incurred by an expansion of biofuel croplands (6, 7). Soybean plantations, from which most of the Brazilian biodiesel is produced (1, 3), already occupy 35% of the country's cultivated land (9). It is known that biofuels can replace vast areas of farmland and native habitats, driving up food prices and resulting in little reduction of or even increasing greenhouse gas (GHG) emissions (6,7,(10)(11)(12)(13)(14)(15).Previous studies focused on the direct land-use changes (DLUC) and the "carbon debt" caused by the replacement of native habitats by biofuel crops in Brazil (7,8,10,11). Others pointed to the probable indirect land-use changes (ILUC) in Brazil caused by future expansion of biofuel croplands in the United States (14-16). Overall, these studies show that potential LUC must be taken into account to assess the efficacy of a given biofuel. However, these studies were neither spatially...
Climate change scenarios vary considerably over the Amazon region, with an extreme scenario projecting a dangerous (from the human perspective) increase of 3.88C in temperature and 30% reduction in precipitation by 2050. The impacts of such climate change on Amazonian land-use dynamics, agricultural production, and deforestation rates are still to be determined. In this study, the authors make a first attempt to assess these impacts through a systemic approach, using a spatially explicit modeling framework to project crop yield and land-use/land-cover changes in the Brazilian Amazon by 2050. The results show that, without any adaptation, climate change may exert a critical impact on the yields of crops commonly cultivated in the Amazon (e.g., soybean yields are reduced by 44% in the worst-case scenario). Therefore, following baseline projections on crop and livestock production, a scenario of severe regional climate change would cause additional deforestation of 181 000 km 2 (120%) in the Amazon and 240 000 km 2 (1273%) in the Cerrado compared to a scenario of moderate climate change. Putting an end to deforestation in the Brazilian Amazon forest by 2020 (and of the Cerrado by 2025) would require either a reduction of 26%-40% in livestock production until 2050 or a doubling of average livestock density from 0.74 to 1.46 head per hectare. These results suggest that (i) climate change can affect land use in ways not previously explored, such as the reduction of yields entailing further deforestation, and (ii) there is a need for an integrated/multidisciplinary plan for adaptation to climate change in the Amazon.
Abstract. Within the GLOWA Jordan River project, a first-time overview of the current and possible future land and water conditions of a major part of the Eastern Mediterranean region (ca. 100 000 km2) is given. First, we applied the hydrological model TRAIN to simulate current water availability (runoff and groundwater recharge) and irrigation water demand on a 1 km×1 km spatial resolution. The results demonstrate the scarcity of water resources in the study region, with extremely low values of water availability in the semi-arid and arid parts. Then, a set of four divergent scenarios on the future of water has been developed using a stakeholder driven approach. Relevant drivers for land-use/land-cover change were fed into the LandSHIFT.R model to produce land-use and land-cover maps for the different scenarios. These maps were used as input to TRAIN in order to generate scenarios of water availability and irrigation water demand for the region. For this study, two intermediate scenarios were selected, with projected developments ranging between optimistic and pessimistic futures (with regard to social and economic conditions in the region). Given that climate conditions remain unchanged, the simulations show both increases and decreases in water availability, depending on the future pattern of natural and agricultural vegetation and the related dominance of hydrological processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.