Despite a significant increase in EPCs and release of cytochemokines during CABG, age is a major limiting factor for mobilization of EPCs. Further studies are necessary to improve the strategies for mobilization, ex vivo expansion, and re-transplantation of EPCs in aging patients.
Advanced glycation end products (AGEs) are formed in vivo by a non-enzymatic reaction of proteins with carbohydrates and accumulate in many tissues during ageing. They are discussed as being responsible for many age- and diabetes-related diseases. On the other hand, AGEs are formed by the heating of food and are taken up by the nutrition. The contribution of endogenously formed versus exogenous intake of AGEs to age-related diseases is still under discussion.
In terminally failing human myocardium of patients receiving drug therapy, complex I depression is not caused by mtDNA damage and disturbed mitochondrial gene expression. The absence of mtDNA damage should facilitate recovery of the overloaded myocardium, if effective unloading could be achieved.
Human atria and ventricles show specific gene expression profiles. Our data provide the basis of a comprehensive understanding of chamber-specific gene expression in diseased human hearts and will support the identification of therapeutic targets in the treatment of arrhythmia and heart failure.
Background-In chronic heart failure, myocardial expression of the inducible isoform of nitric oxide (NO) synthase (NOS2) is enhanced, leading to a sustained production of NO. We postulated that NO modulates expression of genes in cardiac myocytes that may be functionally important in the context of cardiac hypertrophy and failure. Methods and Results-As revealed by cDNA expression array analyses, the NO donor SNAP, which has been shown previously to inhibit agonist-induced cardiac myocyte hypertrophy, downregulates expression of the cytoskeletonassociated muscle LIM protein (MLP) in endothelin-1 (ET-1)-stimulated neonatal rat cardiac myocytes. Northern blotting and immunoblotting experiments confirmed this finding and established that SNAP negatively controls MLP mRNA (Ϫ49%, PϽ0.01) and protein (Ϫ52%, PϽ0.01) abundance in ET-1-treated cardiomyocytes via cGMPdependent protein kinase and superoxide/peroxynitrite-dependent signaling pathways. Treatment of cardiac myocytes with IL-1 and IFN-␥ downregulated MLP expression levels via induction of NOS2. Moreover, expression levels of NOS2 and MLP were inversely correlated in the failing human heart, indicating that NOS2 may regulate MLP abundance in vitro and in vivo. Antisense oligonucleotides were used to explore the functional consequences of reduced MLP expression levels in cardiac myocytes. Like SNAP, antisense downregulation of MLP protein expression (Ϫ52%, PϽ0.01) blunted the increases in protein synthesis, cell size, and sarcomere organization in response to ET-1 stimulation. Conversely, overexpression of MLP augmented cell size and sarcomere organization in cardiac myocytes. Conclusions-NO negatively controls MLP expression in cardiac myocytes. Because MLP is necessary and sufficient for hypertrophy and sarcomere assembly, MLP downregulation may restrain hypertrophic growth in pathophysiological situations with increased cardiac NO production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.