BACKGROUND & AIMS Loss of function of the cystic fibrosis transmembrane conductance regulator (CFTR) in the biliary epithelium reduces bile flow and alkalinization in patients with CF. Liver damage is thought to result from ductal cholestasis, but only 30% of patients with CF develop liver defects, indicating that another factor is involved. We studied the effects of CFTR deficiency on Toll-like receptor 4 (TLR4)-mediated responses of the biliary epithelium to endotoxins. METHODS Dextran sodium sulfate (DSS) was used to induce colitis C57BL/6J-Cftrtm1Unc (Cftr-KO) mice and their wild-type littermates. Ductular reaction and portal inflammation were quantified by keratin19 and CD-45 immunolabeling. Cholangiocytes isolated from wild-type and Cftr-KO mice were challenged with lipopolysaccharide (LPS); cytokine secretion was quantified. Activation of NF- κB, phosphorylation of TLR4, and activity of Src were determined. HEK-293 that expressed the secreted alkaline phosphatase (SEAP) reporter and human TLR4 were transfected with CFTR cDNAs. RESULTS DSS-induced colitis caused biliary damage and portal inflammation only in Cftr-KO mice. Biliary damage and inflammation were not attenuated by restoring biliary secretion with nor-ursodeoxycholic acid, but were significantly reduced by oral neomycin and polymyxin B, indicating a pathogenetic role of gut-derived bacterial products. Cftr-KO cholangiocytes incubated with LPS secreted significantly higher levels of cytokines regulated by TLR4 and NF-κB. LPS-mediated activation of NF- κB was blocked by the TLR4 inhibitor TAK-242. TLR4 phosphorylation by Src was significantly increased in Cftr-KO cholangiocytes. Expression of wild-type CFTR in the HEK293 cells stimulated with LPS reduced activation of NF- κB. CONCLUSIONS CFTR deficiency alters the innate immunity of the biliary epithelium and reduces its tolerance to endotoxin, resulting in a Src-dependent inflammatory response mediated by TLR4 and NF- κB. These findings might be used to develop therapies for CF-associated cholangiopathy.
Congenital Hepatic Fibrosis (CHF) is a disease of the biliary epithelium characterized by bile duct changes resembling ductal plate malformations and by progressive peribiliary fibrosis, in the absence of overt necroinflammation. Progressive liver fibrosis leads to portal hypertension and liver failure, however the mechanisms leading to fibrosis in CHF remain elusive. CHF is caused by mutations in PKHD1, a gene encoding for fibrocystin, a ciliary protein expressed in cholangiocytes. Using a fibrocystin-defective (Pkhd1del4/del4) mouse, which is orthologous of CHF, we show that Pkhd1del4/del4 cholangiocytes are characterized by a β-catenin-dependent secretion of a range of chemokines, including CXCL1, CXCL10 and CXCL12, which stimulate bone marrow-derived macrophage recruitment. We also show that Pkhd1del4/del4 cholangiocytes, in turn, respond to proinflammatory cytokines released by macrophages by up-regulating αvβ6 integrin, an activator of latent local TGFβ1. While the macrophage infiltrate is initially dominated by the M1 phenotype, the profibrogenic M2 phenotype increases with disease progression, along with the number of portal myofibroblasts. Consistent with these findings, clodronate-induced macrophage depletion results in a significant reduction of portal fibrosis and portal hypertension as well as of liver cysts. Conclusion our results show that fibrosis can be initiated by an epithelial cell dysfunction, leading to low-grade inflammation, macrophage recruitment and collagen deposition. These findings establish a new paradigm for biliary fibrosis and represent a model to understand the relationship between cell dysfunction, parainflammation, liver fibrosis and macrophage polarization over time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.