While the human is the ultimate expert, EcCk has a significant potential to improve quality and efficiency of patient treatment record audits, and to allow verification of tasks that are not easily performed by humans. EcCk can potentially relieve human experts from simple and repetitive tasks, and allow them to work on other important tasks, and in the end to improve the quality and safety of radiation therapy treatments.
Specially designed electronic event reporting systems in a radiotherapy setting can provide valuable data for process and patient safety improvement and are more effective reporting mechanisms than paper-based systems. Additional work is needed to develop methods that can more effectively utilize reported data for process improvement, including the development of standardized event taxonomy and a classification system for RT.
Radiation doses received during a criticality accident will be from a combination of fission spectrum neutrons and gamma rays. It is desirable to estimate the total dose, as well as the neutron and gamma doses. Present methods for dose estimation with chromosome aberrations after a criticality accident use point estimates of the neutron to gamma dose ratio obtained from personnel dosemeters and/or accident reconstruction calculations. In this paper a Bayesian approach to dose estimation with chromosome aberrations is developed which allows the uncertainty of the dose ratio to be considered. Posterior probability densities for the total and the neutron and gamma doses were derived.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.