Counteracting bone loss is required for future space exploration. We evaluated the ability of treadmill exercise in a LBNP chamber to counteract bone loss in a 30-day bed rest study. Eight pairs of identical twins were randomly assigned to sedentary control or exercise groups. Exercise within LBNP decreased the bone resorption caused by bed rest and may provide a countermeasure for spaceflight.Introduction: Bone loss is one of the greatest physiological challenges for extended-duration space missions. The ability of exercise to counteract weightlessness-induced bone loss has been studied extensively, but to date, it has proven ineffective. We evaluated the effectiveness of a combination of two countermeasures-treadmill exercise while inside a lower body negative pressure (LBNP) chamber-on bone loss during a 30-day bed rest study. Materials and Methods: Eight pairs of identical twins were randomized into sedentary (SED) or exercise/LBNP (EX/LBNP) groups. Blood and urine samples were collected before, several times during, and after the 30-day bed rest period. These samples were analyzed for markers of bone and calcium metabolism. Repeated measures ANOVA was used to determine statistical significance. Because identical twins were used, both time and group were treated as repeated variables. Results: Markers of bone resorption were increased during bed rest in samples from sedentary subjects, including the collagen cross-links and serum and urinary calcium concentrations. For N-telopeptide and deoxypyridinoline, there were significant (p Ͻ 0.05) interactions between group (SED versus EX/LBNP) and phase of the study (sample collection point). Pyridinium cross-links were increased above pre-bed rest levels in both groups, but the EX/LBNP group had a smaller increase than the SED group. Markers of bone formation were unchanged by bed rest in both groups. Conclusions: These data show that this weight-bearing exercise combined with LBNP ameliorates some of the negative effects of simulated weightlessness on bone metabolism. This protocol may pave the way to counteracting bone loss during spaceflight and may provide valuable information about normal and abnormal bone physiology here on Earth.
We have shown previously that treadmill exercise within lower body negative pressure (LBNPex) maintains upright exercise capacity (peak oxygen consumption, Vo(2peak)) in men after 5, 15, and 30 days of bed rest (BR). We hypothesized that LBNPex protects treadmill Vo(2peak) and sprint speed in women during a 30-day BR. Seven sets of female monozygous twins volunteered to participate. Within each twin set, one was randomly assigned to a control group (Con) and performed no countermeasures, and the other was assigned to an exercise group (Ex) and performed a 40-min interval (40-80% pre-BR Vo(2peak)) LBNPex (51 +/- 5 mmHg) protocol, plus 5 min of static LBNP, 6 days per week. Before and immediately after BR, subjects completed a 30.5-m sprint test and an upright graded treadmill test to volitional fatigue. These results in women were compared with previously reported reductions in Vo(2peak) and sprint speed in male twins after BR. In women, sprint speed (-8 +/- 2%) and Vo(2peak) (-6 +/- 2%) were not different after BR in the Ex group. In contrast, both sprint speed (-24 +/- 5%) and Vo(2peak) (-16 +/- 3%) were significantly less after BR in the Con group. The effect of BR on sprint speed and Vo(2peak) after BR was not different between women and men. We conclude that treadmill exercise within LBNP protects against BR-induced reductions in Vo(2peak) and sprint speed in women and should prove effective during long-duration spaceflight.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.