Spectral analyses of all the forces and moments acting on a typical centrifugal pump impeller/volute combination are presented. These exhibit shaft frequencies, blade passing frequencies, and beat frequencies associated with a whirl motion imposed on the shaft in order to measure rotordynamic forces. Among other features the unsteady thrust was found to contain a surprisingly large blade passing harmonic. While previous studies have explored the magnitudes of the steady fluid-induced radial forces and the fluid-induced rotordynamic forces for this typical centrifugal pump impeller/volute combination, this paper presents information on the steady bending moments and rotordynamic moments due to the fluid flow. These imply certain axial locations for the lines of action of the radial and rotordynamic forces. Data on the lines of action are presented and allow inferences on the sources of the forces.
This paper presents a theoretical one-dimensional model and computational fluid dynamics (CFD) simulations of a tailcone-installed APU cooling system. The work is motivated by the need to deliver sufficient cooling airflow to critical components within an aircraft tailcone compartment. The cooling system considered herein utilizes (1) an eductor system at the APU exhaust and (2) a ram air scoop near an upstream inlet to the compartment to induce the necessary cooling flow during ground and in-flight APU operation. A one-dimensional flow network model provides a framework for the quantification and matching of eductor pumping and system pressure drop characteristics. Detailed CFD models that simulate internal tailcone compartment flows driven by ambient conditions external to the aircraft in ground or flight operation support the one-dimensional model and are used to characterize component performance and assess different scoop and eductor designs. The one-dimensional flow network model is calibrated to the CFD results to predict system cooling performance under known APU loads at points on the ground and in the flight envelope. The agreement between the models is encouraging and suggests the modeling framework and CFD techniques discussed will be applicable to future designs and improvements of eductor-driven aircraft compartment cooling systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.