Exercise training is commonly prescribed for treatment of nonalcoholic fatty liver disease (NAFLD). We sought to determine whether exercise training prevents the development of NAFLD in Otsuka Long-Evans Tokushima Fatty (OLETF) rats and to elucidate the molecular mechanisms underlying the effects of exercise on hepatic steatosis. Four-week-old OLETF rats were randomly assigned to either a sedentary control group (Sed) or a group given access to voluntary running wheels for 16 wk (Ex). Wheels were locked 2 days before euthanasia in the Ex animals, and both groups were euthanized at 20 wk old. Voluntary wheel running attenuated weight gain and reduced serum glucose, insulin, free fatty acids, and triglycerides in Ex animals compared with Sed (P < 0.001). Ex animals exhibited significantly reduced hepatic triglyceride levels and displayed fewer lipid droplets (Oil Red O staining) and reduced lipid droplet size compared with Sed. Wheel running increased by threefold the percent of palmitate oxidized completely to CO(2) in the Ex animals but did not alter AMP-activated protein kinase-alpha (AMPKalpha) or AMPK phosphorylation status. However, fatty acid synthase and acetyl-coenzyme A carboxylase (ACC) content were significantly reduced (approximately 70 and approximately 35%, respectively), and ACC phosphorylation and cytochrome c content were significantly elevated (approximately 35 and approximately 30%, respectively) in the Ex animals. These results unequivocally demonstrate that daily physical activity attenuates hepatic steatosis and NAFLD in an obese rodent model and suggest that this effect is likely mediated, in part, through enhancement of hepatic fatty acid oxidation and reductions in key protein intermediates of fatty acid synthesis.
Background & Aims-In this study, we sought to determine the temporal relationship between hepatic mitochondrial dysfunction, hepatic steatosis and insulin resistance, and to examine their potential role in the natural progression of non-alcoholic fatty liver disease (NAFLD) utilising a sedentary, hyperphagic, obese, Otsuka Long-Evans Tokushima Fatty (OLETF) rat model.
Nonalcoholic fatty liver disease (NAFLD) includes hepatic steatosis, nonalcoholic steatohepatitis (NASH), fibrosis, and cirrhosis. NAFLD is the most common liver disorder in the United States and worldwide. Due to the rapid rise of the metabolic syndrome, the prevalence of NAFLD has recently dramatically increased and will continue to increase. NAFLD has also the potential to progress to hepatocellular carcinoma (HCC) or liver failure. NAFLD is strongly linked to caloric overconsumption, physical inactivity, insulin resistance and genetic factors. Although significant progress in understanding the pathogenesis of NAFLD has been achieved in years, the primary metabolic abnormalities leading to lipid accumulation within hepatocytes has remained poorly understood. Mitochondria are critical metabolic organelles serving as "cellular power plants". Accumulating evidence indicate that hepatic mitochondrial dysfunction is crucial to the pathogenesis of NAFLD. This review is focused on the significant role of mitochondria in the development of NAFLD.
Sedentary lifestyle and poor dietary choices are leading to a weight gain epidemic in westernized countries, subsequently increasing the risk for developing the metabolic syndrome and nonalcoholic fatty liver disease (NAFLD). NAFLD is estimated to affect approximate 30% of the general US population and is considered the hepatic manifestation of the metabolic syndrome. Re c e n t f i n d i n g s l i n k i n g t h e c o m p o n e n t s o f t h e metabolic syndrome with NAFLD and the progression to nonalcoholic steatohepatitis (NASH) will be reviewed; in particular, the role of visceral adipose tissue, insulin resistance, and adipocytokines in the exacerbation of these condi tions. While no therapy has been proven effective for treating NAFLD/NASH, common recommendations will be discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.