The present study investigated the effects of in-season enhanced negative work-based training (ENT) vs weight training in the change of direction (COD), sprinting and jumping ability, muscle mass and strength in semi-professional soccer players. Forty male soccer players participated in the eight-week, 1 d/w intervention consisting of 48 squat repetitions for ENT using a flywheel device (inertia=0.11 kg·m-2) or weight training (80%1 RM) as a control group (CON). Agility T-test, 20+20 m shuttle, 10 m and 30 m sprint, squat jump (SJ) and countermovement jump (CMJ), lean mass, quadriceps and hamstrings strength and the hamstrings-to-quadriceps ratio were measured. Time on agility T-test and 20+20 m shuttle decreased in ENT (effect-size =-1.44, 95% CI -2.24/-0.68 and -0.75, -1.09/-0.42 respectively) but not in CON (-0.33, -0.87/0.19 and -0.13, -0.58/0.32). SJ and CMJ height increased in both ENT (0.71, 0.45/0.97 and 0.65, 0.38/0.93) and CON (0.41, 0.23/0.60 and 0.36, 0.12/0.70). Overall, quadriceps and hamstrings strength increased in both ENT and CON (0.38/0.79), but the hamstrings-to-quadriceps ratio increased in ENT (0.31, 0.22/0.40) but not in CON (0.03, -0.18/0.24). Lean mass increased in both ENT (0.41, 0.26/0.57) and CON (0.29, 0.14/0.44). The repeated negative actions performed in ENT may have led to improvements in braking ability, a key point in COD performance. Semi-professional soccer players may benefit from in-season ENT to enhance COD and the negative-specific adaptations in muscle strength and hamstrings-to-quadriceps ratio.
Physical education (PE) researchers sustain that the teaching styles adopted by PE teachers play a key role in defining children’s positive experiences during lessons and have a relevant impact on their psychophysical health. However, a limited number of studies has examined the effect of teaching styles on these aspects. The aim of this study was to investigate the effectiveness of an integrated approach mainly based on integration of multi-teaching styles and active reflection (MTA) on the fitness level, motor competence, enjoyment, self-perception, amount of physical activity (PA), and children’s perception of PE, in Italian primary school children. Participants were 121 children from three elementary schools. Children were randomly assigned into two groups: (a) an intervention group (IG) that received PE lessons based on MTA provided by specifically trained PE students, and (b) a control group (CG) that received standard PE lessons (S-PE) from primary school classroom teachers. Both groups engaged in two PE lessons per week lasting 1 h each for 12 weeks. The findings revealed an increase in the children’s fitness level, motor competence, enjoyment and amount of PA in the IG compared to those in the CG. Furthermore, the children of the IG spent more time being engaged on a task, reflecting on it, and wasted less time during PE compared to the children of the CG. Finally, the children of the IG reported higher levels of satisfaction with PE lessons and teaching styles compared to children of the CG. Integration of different teaching styles lead by specifically trained educators can be suggested as a valuable strategy to provide learning experiences of children of primary school to have positive effects on their physical literacy development promoting healthy lifestyles.
The circadian rhythm plays a fundamental role in regulating biological functions, including sleep–wake preference, body temperature, hormonal secretion, food intake, and cognitive and physical performance. Alterations in circadian rhythm can lead to chronic disease and impaired sleep. The circadian rhythmicity in human beings is represented by a complex phenotype. Indeed, over a 24-h period, a person’s preferred time to be more active or to sleep can be expressed in the concept of morningness–eveningness. Three chronotypes are distinguished: Morning, Neither, and Evening-types. Interindividual differences in chronotypes need to be considered to reduce the negative effects of circadian disruptions on health. In the present review, we examine the bi-directional influences of the rest–activity circadian rhythm and sleep–wake cycle in chronic pathologies and disorders. We analyze the concept and the main characteristics of the three chronotypes.
The aim of this study was to investigate the relationship between basic cognitive functions and sport-specific physical performance in young volleyball players. Forty-three female volleyball players (age 11.2 ± 0.8 years) were tested for cognitive performance by measuring simple reaction time (clinical reaction time), executive control (Flanker task), and perceptual speed (visual search task). Moreover, a set of tests was used to assess physical abilities as volleyball-specific skills (accuracy of setting, passing, and serving) and motor skills (change of direction, vertical jump, and balance). A cumulated value for both cognitive and sport-specific physical performance tests was computed by adding up each test’s domain outcomes. Pearson’s r correlation analysis showed a large positive correlation (r = 0.45, d-value = 1.01) of the cumulated score summarizing cognitive functions with the cumulated score summarizing sport-specific physical performance. Moreover, small-to-medium correlations (d-value from 0.63 to 0.73) were found between cognitive and motor skills. Given the cumulative scores, these results suggest that volleyball athletes with superior basic cognitive functions present better sport-specific physical performance. Our findings encourage to extend the knowledge of the associations between cognitive and motor skills within a sports performance context.
The passive drag (Dp) during swimming is affected by the swimmer’s morphology, body density and body position. We evaluated the relative contribution of morphology, body composition, and body position adjustments in the prediction of a swimmer’s Dp. This observational study examined a sample of 60 competitive swimmers (31 male and 29 female) with a mean (±SD) age of 15.4 ± 3.1 years. The swimmer’s Dp was measured using an electro-mechanical towing device and the body composition was assessed using a bioelectrical impedance analyser. Body lengths and circumferences were measured in both the standing position and the simulated streamlined position. Partial correlation analysis with age as a control variable showed that Dp was largely correlated (p < 0.05) with body mass, biacromial- and bi-iliac-breadth, streamline chest circumference and breadth. Body mass, Body Mass Index, chest circumference and streamline chest circumference showed a significant and moderate to strong effect (η2 > 0.55) on Dp. Body mass was the best predictor of Dp explaining 69% of the variability. These results indicate that swimmers with lower Dp values were: (i) slimmer, with lower fat and fat-free mass, (ii) thinner, with lower shoulder breadth, chest circumference, and streamline trunk diameters (iii), shorter, with lower streamline height. These findings can be used for talent identification in swimming, with particular reference to the gliding performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.