The viscosity of quantum fluids with an energy gap at zero temperature is non-dissipative and is related to the adiabatic curvature on the space of flat background metrics (which plays the role of the parameter space). For a
We present straightforward proofs of estimates used in the adiabatic approximation. The gap dependence is analyzed explicitly. We apply the result to interpolating Hamiltonians of interest in quantum computing. * Electronic address: jansen@math.tu-berlin.de † Electronic address: seiler@math.tu-berlin.de ‡ Electronic address: Marybeth.Ruskai@tufts.edu
Abstract. We study the relative index of two orthogonal infinite dimensional projections which, in the finite dimensional case, is the difference in their dimensions. We relate the relative index to the Fredholm index of appropriate operators, discuss its basic properties, and obtain various formulas for it. We apply the relative index to counting the change in the number of electrons below the Fermi energy of certain quantum systems and interpret it as the charge deficiency. We study the relation of the charge deficiency with the notion of adiabatic charge transport that arises from the consideration of the adiabatic curvature. It is shown that, under a certain covariance, (homogeneity), condition the two are related. The relative index is related to Bellissard's theory of the Integer Hall effect. For Landau Hamiltonians the relative index is computed explicitly for all Landau levels.
We study an adiabatic evolution that approximates the physical dynamics and describes a natural parallel transport in spectral subspaces. Using this we prove two folk theorems about the adiabatic limit of quantum mechanics: 1. For slow time variation of the Hamiltonian, the time evolution reduces to spectral subspaces bordered by gaps. 2. The eventual tunneling out of such spectral subspaces is smaller than any inverse power of the time scale if the Hamiltonian varies infinitly smoothly over a finite interval. Except for the existence of gaps, no assumptions are made on the nature of the spectrum. We apply these results to charge transport in quantum Hall Hamiltonians and prove that the flux averaged charge transport is an integer in the adiabatic limit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.