Abstract. The JWL EOS is widely used in different forms (two, three terms) according to the level of accuracy in the pressure-volume domain that applications need. The foundations of the relationship chosen to represent the reference curve, Chapman-Jouguet (CJ) isentrope, can be found assuming that the DP expansion isentrope issued from the CJ point is very nearly coincident with the Crussard curve in the pressure-material velocity plane. Its mathematical expression, using an appropriate relationship between shock velocity and material velocity leads to the exponential terms of the JWL EOS. It well validates the pressure-volume relationship chosen to represent the reference curves for DP. Nevertheless, the assumption of constant Gruneisen coefficient and heat capacity in the EOS thermal part remains the more restrictive assumption. A new derivation of JWL EOS is proposed, using a less restrictive assumption for the Gruneisen coefficient suggested by W.C. Davis to represent both large expansions and near-CJ states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.