In populated cities, we often find crowded events like political meetings, religious festivals, music concerts, and events in shopping malls, which have more safety issues. Smart surveillance systems are used in big cities to keep crowds safe and make crowd security less complicated and more accurate. However, the surveillance systems proposed for a crowd are monitored by human agents, which are inefficient, error-prone, and overwhelming. Even with deep learning-based feature engineering in crowds, many variants of crowd analysis still lack attention and are technically unaddressed. Considering this scenario, the smart system requires the most advanced techniques to monitor the security of the crowd. Crowd analysis is commonly divided into crowd statics and behavior analysis. This paper explores more about crowd behaviour analysis, pedestrian and group detection which describes the movements that are noticed in the crowd image. Subsequently, the issues of the current methodology of pedestrian detection, datasets, and evaluation criteria are analyzed. Keyword : Crowd Analysis, Pedestrian and group detection, deep learning, Crowd IoT analysis, Human Activity Recognition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.