New complexes of 2,3-bis(5-(4-chlorophenyl)diazenyl)-2-hydroxybenzylideneamino)maleonitrile (CDHBDMN) with VO(II), Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) were synthesized and characterized by analytical and physicochemical techniques, that is, elemental analyses, molar conductivity, UV, IR, EPR, 1 H-NMR spectra, magnetic susceptibility and also by aid of scanning electron microscopy (SEM), nonlinear optical study (NLO), �uorescence spectral studies, and solvatochromic behaviors. Electronic and magnetic susceptibility measurements of the complexes indicate square pyramidal geometry for VO(II), octahedral for Ni(II), and square planar geometry for all the other complexes. e EPR spectral data provide information about their structures on the basis of Hamiltonian parameters and the degree of covalency. ese metal complexes were also tested for their antibacterial and antifungal activities to assess their inhibiting potential. Metal-mediated �uorescence enhancement is observed on complexation of the azo Schiff base ligand. e synthesized compounds were investigated for nonlinear optical properties, and the surface morphology of the Cu(II) complex was studied by scanning electron microscopy.
Tridentate chelate complexes of ML type (where M = Cu(II), Ni(II), and Co(II)) have been synthesized from triazine-based ligand 4,6-bis(5-mercapto-1,3,4-thiadiazol-amine)2-phenylamino-1,3,5-triazine (BMTDT). Microanalytical data, magnetic susceptibility measurements, IR, 1H NMR, UV-vis, mass, and EPR spectral techniques were used to characterise the structure of chelates. The electronic absorption spectra and magnetic susceptibility measurements suggest that metal complexes show square pyramidal geometry. The electrochemical behavior of copper(II) complex is studied by cyclic voltammetry. All synthesized compounds may serve as potential photoactive materials as indicated from their characteristic fluorescence properties. The second harmonic generation efficiency (SHG) of the ligand and metal complexes has been found to be higher than that of urea and KDP. The antimicrobial activity of the ligand and metal(II) complexes against the species Shigella, Chromobacterium, Staphylococcus aureus, Candida albicans, and Aspergillus niger has been carried out and compared with the standard one.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.