During the SARS-CoV-2 pandemic, novel and traditional vaccine strategies have been deployed globally. We investigated whether antibodies stimulated by mRNA vaccination (BNT162b2), including 3 rd dose boosting, differ from those generated by infection or adenoviral (ChAdOx1-S and Gam-COVID-Vac) or inactivated viral (BBIBP-CorV) vaccines. We analyzed human lymph nodes after infection or mRNA vaccination for correlates of serological differences. Antibody breadth against viral variants is less after infection compared to all vaccines evaluated, but improves over several months. Viral variant infection elicits variant-specific antibodies, but prior mRNA vaccination imprints serological responses toward Wuhan-Hu-1 rather than variant antigens. In contrast to disrupted germinal centers (GCs) in lymph nodes during infection, mRNA vaccination stimulates robust GCs containing vaccine mRNA and spike antigen up to 8 weeks post-vaccination in some cases. SARS-CoV-2 antibody specificity, breadth and maturation are affected by imprinting from exposure history, and distinct histological and antigenic contexts in infection compared to vaccination.
Ingestion of innocuous antigens, including food proteins, normally results in local and systemic immune nonresponsiveness in a process termed oral tolerance. Oral tolerance to food proteins is likely to be intimately linked to mechanisms that are responsible for gastrointestinal tolerance to large numbers of commensal microbes. Here, we review our current understanding of the immune mechanisms responsible for oral tolerance and how perturbations in these mechanisms may promote the loss of oral tolerance and development of food allergies. Roles for the commensal microbiome in promoting oral tolerance, and the association of intestinal dysbiosis with food allergy, are discussed. Growing evidence supports cutaneous sensitization to food antigens as one possible mechanism leading to the failure to develop or loss of oral tolerance. A goal of immunotherapy for food allergies is to induce sustained desensitization, or even true long-term oral tolerance, to food allergens through mechanisms that may in part overlap with those associated with the development of natural oral tolerance.
BACKGROUNDPeanut allergy, for which there are no approved treatment options, affects patients who are at risk for unpredictable and occasionally life-threatening allergic reactions. METHODS Randomization and BlindingEligible participants were randomly assigned, in a 3:1 ratio, to receive either AR101, a peanut-derived pharmaceutical product that was manufactured
IMPORTANCE There are currently no approved treatments for peanut allergy. OBJECTIVE To assess the efficacy and adverse events of epicutaneous immunotherapy with a peanut patch among peanut-allergic children. DESIGN, SETTING, AND PARTICIPANTS Phase 3, randomized, double-blind, placebo-controlled trial conducted at 31 sites in 5 countries between January 8, 2016, and August 18, 2017. Participants included peanut-allergic children (aged 4-11 years [n = 356] without a history of a severe anaphylactic reaction) developing objective symptoms during a double-blind, placebo-controlled food challenge at an eliciting dose of 300 mg or less of peanut protein. INTERVENTIONS Daily treatment with peanut patch containing either 250 μg of peanut protein (n = 238) or placebo (n = 118) for 12 months. MAIN OUTCOMES AND MEASURES The primary outcome was the percentage difference in responders between the peanut patch and placebo patch based on eliciting dose (highest dose at which objective signs/symptoms of an immediate hypersensitivity reaction developed) determined by food challenges at baseline and month 12. Participants with baseline eliciting dose of10mgorlesswererespondersiftheposttreatmentelicitingdosewas300mgormore;participants with baseline eliciting dose greater than 10 to 300 mg were responders if the posttreatment eliciting dose was 1000 mg or more. A threshold of 15% or more on the lower bound of a 95% CI around responder rate difference was prespecified to determine a positive trial result. Adverse event evaluation included collection of treatment-emergent adverse events (TEAEs). RESULTS Among 356 participants randomized (median age, 7 years; 61.2% male), 89.9% completed the trial; the mean treatment adherence was 98.5%. The responder rate was 35.3% with peanut-patch treatment vs 13.6% with placebo (difference, 21.7% [95% CI, 12.4%-29.8%; P < .001]). The prespecified lower bound of the CI threshold was not met. TEAEs, primarily patch application site reactions, occurred in 95.4% and 89% of active and placebo groups, respectively. The all-causes rate of discontinuation was 10.5% in the peanut-patch group vs 9.3% in the placebo group. CONCLUSIONS AND RELEVANCE Among peanut-allergic children aged 4 to 11 years, the percentage difference in responders at 12 months with the 250-μg peanut-patch therapy vs placebo was 21.7% and was statistically significant, but did not meet the prespecified lower bound of the confidence interval criterion for a positive trial result. The clinical relevance of not meeting this lower bound of the confidence interval with respect to the treatment of peanut-allergic children with epicutaneous immunotherapy remains to be determined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.