Stone columns are found to be effective and economical ground improvement technique in soft grounds. Understanding its behaviour when they are installed in stratified soils, in particular when the upper layer consists of weak soil, will be of great practical significance. This paper presents results from a series of laboratory plate load tests carried out in unit cell tanks to investigate the behaviour of stone columns in layered soils, consisting of weak soft clay overlying a relatively stronger silty soil, for various thicknesses of the top layer. Tests were carried out with two types of loading (1) the entire area in the unit cell tank loaded, to estimate the stiffness of improved ground and (2) only the stone column loaded, to estimate the limiting axial capacity. Laboratory tests were carried out on a column of 90 mm diameter surrounded by layered soil, for an area ratio of 15%. It is found that the depth of top weak layer thickness has a significant influence on the stiffness, load bearing capacity and bulging behavior of stone columns.
A full-scale and extensively instrumented experimental mechanically stabilized earth (MSE) wall with steel grid reinforcements was built on soft clay foundation. Three different locally available poor to marginal quality backfills were used in each of three sections along its length. The soft Bangkok clay in the subsoil is about 6 m thick, overlain by a surficial 2 m thick weathered clay crust and underlain by a layer of stiff clay. It was observed that the amount of subsoil movement greatly influenced the variation in the vertical pressure beneath the wall, as well as the tension in the reinforcement. Pullout resistances in the field were also found to be very much affected by the arching effects due to the presence of inextensible reinforcement in combination with the subsoil movements. The wall showed no signs of instability both during construction and in the postconstruction phases, despite the large settlements and lateral movements. Its overall performance has been satisfactory. It was concluded that the steel grid reinforcement can be effectively used to reinforce poor to marginal quality backfill in walls and embankments on soft clay foundations. Key words: mechanically stabilized earth, inextensible reinforcements, soft clay foundation, poor quality backfills, base pressures, settlements, lateral movements, lateral pressures, compaction, arching.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.