Translation is regulated predominantly at the initiation phase by several signal transduction pathways that are often usurped in human cancers, including the PI3K/Akt/mTOR axis. mTOR exerts unique administration over translation by regulating assembly of eukaryotic initiation factor (eIF) 4F, a heterotrimeric complex responsible for recruiting 40S ribosomes (and associated factors) to mRNA 5′ cap structures. Hence, there is much interest in targeted therapies that block eIF4F activity to assess the consequences on tumor cell growth and chemotherapy response. We report here that hippuristanol (Hipp), a translation initiation inhibitor that selectively inhibits the eIF4F RNA helicase subunit, eIF4A, resensitizes Eμ-Myc lymphomas to DNA damaging agents, including those that overexpress eIF4E—a modifier of rapamycin responsiveness. As Mcl-1 levels are significantly affected by Hipp, combining its use with the Bcl-2 family inhibitor, ABT-737, leads to a potent synergistic response in triggering cell death in mouse and human lymphoma and leukemia cells. Suppression of eIF4AI using RNA interference also synergized with ABT-737 in murine lymphomas, highlighting eIF4AI as a therapeutic target for modulating tumor cell response to chemotherapy.
International audienceThe catalytic activity of four aminocarbonyl group containing 'boomerang'-type ring-closing metathesis catalysts have been studied for ten-membered lactone and compared well with the Grubbs I and II as well as the Hoveyda-Grubbs catalysts. The activity was found to be superior to the above three ring-closing metathesis catalysts and suggesting novel stereoselective total syntheses of herbarumin I and stagonolide A
An efficient synthesis of hippuristanol (1), a marine-derived highly potent antiproliferative steroidal natural product, and nine closely related analogues has been accomplished from the commercially available hydrocortisone utilizing Hg(II)-catalyzed spiroketalization of 3-alkyne-1,7-diol motif as a key strategy. This practical synthetic sequence furnished 1 in 11% overall yield from hydrocortisone in 15 linear steps. Modifications to the parent molecule 1 encompassed changing the functional groups on rings A and E. Each analogue was screened for their effects on inhibition of cap-dependent translation, and the assay results were used to establish structure-activity relationships. These results suggest that the stereochemistry and all substituents of spiroketal portion (rings E and F) and C3-α and C11-β hydroxyl functional groups on rings A and C, respectively, are critical for the inhibitory activity of natural product 1.
BackgroundChemotherapy-induced hair loss (alopecia) (CIA) is one of the most feared side effects of chemotherapy among cancer patients. There is currently no pharmacological approach to minimize CIA, although one strategy that has been proposed involves protecting normal cells from chemotherapy by transiently inducing cell cycle arrest. Proof-of-concept for this approach, known as cyclotherapy, has been demonstrated in cell culture settings.MethodsThe eukaryotic initiation factor (eIF) 4E is a cap binding protein that stimulates ribosome recruitment to mRNA templates during the initiation phase of translation. Suppression of eIF4E is known to induce cell cycle arrest. Using a novel inducible and reversible transgenic mouse model that enables RNAi-mediated suppression of eIF4E in vivo, we assessed the consequences of temporal eIF4E suppression on CIA.ResultsOur results demonstrate that transient inhibition of eIF4E protects against cyclophosphamide-induced alopecia at the organismal level. At the cellular level, this protection is associated with an accumulation of cells in G1, reduced apoptotic indices, and was phenocopied using small molecule inhibitors targeting the process of translation initiation.ConclusionsOur data provide a rationale for exploring suppression of translation initiation as an approach to prevent or minimize cyclophosphamide-induced alopecia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.