Understanding animal movement behaviour is key to furthering our knowledge on intra- and inter-specific competition, group cohesion, energy expenditure, habitat use, the spread of zoonotic diseases or species management. We used a radial basis function surface approximation subject to minimum description length constraint to uncover the state-space dynamical systems from time series data. This approximation allowed us to infer structure from a mathematical model of the movement behaviour of sheep and red deer, and the effect of density, thermal stress and vegetation type. Animal movement was recorded using GPS collars deployed in sheep and deer grazing a large experimental plot in winter and summer. Information on the thermal stress to which animals were exposed was estimated using the power consumption of mechanical heated models and meteorological records of a network of stations in the plot. Thermal stress was higher in deer than in sheep, with less differences between species in summer. Deer travelled more distance than sheep, and both species travelled more in summer than in winter; deer travel distance showed less seasonal differences than sheep. Animal movement was better predicted in deer than in sheep and in winter than in summer; both species showed a swarming behaviour in group cohesion, stronger in deer. At shorter separation distances swarming repulsion was stronger between species than within species. At longer separation distances inter-specific attraction was weaker than intra-specific; there was a positive density-dependent effect on swarming, and stronger in deer than in sheep. There was not clear evidence which species attracted or repelled the other; attraction between deer at long separation distances was stronger when the model accounted for thermal stress, but in general the dynamic movement behaviour was hardly affected by the thermal stress. Vegetation type affected intra-species interactions but had little effect on inter-species interactions. Our modelling approach is useful in interpreting animal interactions, in order to unravel complex cooperative or competitive behaviours, and to the best of our knowledge is the first modelling attempt to make predictions of multi-species animal movement under different habitat mosaics and abiotic environmental conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.