A survey of the World Health Organization has revealed that retinal eye disease Glaucoma is the second leading cause for blindness worldwide. It is a disease which will steals the vision of the patient without any warning or symptoms. About half of the World Glaucoma Patients are estimated to be in Asia. Hence, for social and economic reasons, Glaucoma detection is necessary in preventing blindness and reducing the cost of surgical treatment of the disease. The objective of the chapter is to predict and detect Glaucoma efficiently using image processing techniques. We have developed an efficient computer-aided Glaucoma detection system to classify a fundus image as either normal or glaucomatous image based on the structural features of the fundus image such as cup-to-disc ratio (CDR), rim-to-disc ratio (RDR), superior and inferior neuroretinal rim thicknesses, vessel structure-based features, and distribution of texture features in the fundus images. An automated clinical support system is developed to assist the ophthalmologists to identify the persons who are at risk in the early stages of the disease, monitor the progression of the disease, and minimize the examination time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.