Clinical documents are a repository of information about patients' conditions. However, this wealth of data is not properly tapped by the existing analysis tools. Dengue is one of the most widespread water borne diseases known today. Every year, dengue has been threatening lives the world over. Systems already developed have concentrated on extracting disorder mentions using dictionary look-up, or supervised learning methods. This project aims at performing Named Entity Recognition to extract disorder mentions, time expressions and other relevant features from clinical data. These can be used to build a model, which can in turn be used to predict the presence or absence of the disease, dengue. Further, we perform a frequency analysis which correlates the occurrence of dengue and the manifestation of its symptoms over the months. The system produces appreciable accuracy and serves as a valuable tool for medical experts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.