Plants growing in close association with N(2)-fixing bacteria are able to overcome growth limitations in N-depleted soils. The molecular mechanism by which free-living, N(2)-fixing bacteria promote plant growth is still a matter of debate. By inoculating N-depleted tomato (Lycopersicon esculentum Mill.) plants with Azospirillum brasilense or Azoarcus sp. we could demonstrate the induction of the root NH(+)(4)-transporter gene, LEAMT1;2 (L. esculentum ammonium transporter 1;2), indicating that bacterial NH(+)(4) might be used as an N source under these conditions. Azospirillum brasilense (nif(-)) mutants, which lack the structural nifDK genes, failed to induce LEAMT1;2 expression. This suggests that root-associated N(2)-fixing bacteria do excrete NH(+)(4) to levels that can be sensed by tomato roots and is in agreement with the induction of expression of LEAMT1;2 with as low as > or = 1 microM external NH(+)(4). While peak expression was obtained with 2-5 microM NH(+)(4), a further increase in NH(+)(4) reduced LEAMT1;2-mRNA levels in a concentration-dependent manner. The inhibition of LEAMT1;2 expression by glutamine and the glutamine synthetase blocker L-methionine sulfoximine (MSX) provided evidence for the control of LEAMT1;2 expression by cytoplasmic NH(+)(4) concentration or the plant N status. Since micromolar concentrations of NH(+)(4) strongly increased the LEAMT1;2-mRNA levels, the transported NH(+)(4) ion itself could represent a key signal in the associative interaction between higher plants and N(2)-fixing micro-organisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.