The effect of unidirectional solidification on the mechanical properties of high-strength steels was investigated by means of split heats of AISI 4340 and 25 per cent nickel maraging steel. One half of these heats were unidirectionally solidified and the other half of these melts were allowed to solidify to produce an equiaxed structure. These ingots were forged and rolled to a light gage sheet 0.040 to 0.060 in. thick. The materials were evaluated by means of standard tension tests and fracture toughness studies. By means of compliance measurements, it is possible to determine the crack resistance as a function of absolute crack extension. This investigative technique was used to study the AISI 4340 steel. Unidirectional solidification did not alter the crack resistance properties of this steel. However, a 10 per cent improvement in plane-strain fracture toughness as determined by the pop-in technique was observed for the unidirectionally solidified material. In order to obtain very high strength levels, the total content of hardener elements was increased in the 25 per cent nickel maraging steels. Consequently these materials were quite brittle and the results not definitive. However, it was demonstrated that a homogeneous structure is necessary for high values of fracture toughness in this material. The data were interpreted in terms of critical crack size for instability at yield stress. Both through-cracks and part-through-cracks were considered in this analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.