The CRESST-II cryogenic Dark Matter search, aiming at detection of WIMPs via elastic scattering off nuclei in CaWO 4 crystals, completed 730 kg days of data taking in 2011. We present the data collected with eight detector modules, each with a two-channel readout; one for a phonon signal and the other for coincidently produced scintillation light. The former provides a precise measure of the energy deposited by an interaction, and the ratio of scintillation light to deposited energy can be used to discriminate different types of interacting particles and thus to distinguish possible signal events from the dominant backgrounds.Sixty-seven events are found in the acceptance region where a WIMP signal in the form of low energy nuclear recoils would be expected. We estimate background contributions to this observation from four sources: (1) "leakage" from the e/γ -band (2) "leakage" from the α-particle band (3) neutrons and (4) 206 Pb recoils from 210 Po decay. Using a maximum likelihood analysis, we find, at a statistical significance of more than 4σ , that these sources alone are not sufficient to explain the data. The addition of a signal due to scattering of relatively light WIMPs could account for this discrepancy, and we determine the associated WIMP parameters.
The CRESST-II experiment uses cryogenic detectors to search for nuclear recoil events induced by the elastic scattering of dark matter particles in CaWO 4 crystals. Given the low energy threshold of our detectors in combination with light target nuclei, low mass dark matter particles can be probed with high sensitivity. In this letter we present the results from data of a single detector module corresponding to 52 kg live days. A blind analysis is carried out. With an energy threshold for nuclear recoils of 307 eV we substantially enhance the sensitivity for light dark matter. Thereby, we extend the reach of direct dark matter experiments to the sub-GeV/c 2 region and demonstrate that the energy threshold is the key parameter in the search for low mass dark matter particles.
The CRESST experiment is a direct dark matter search which aims to measure interactions of potential dark matter particles in an earth-bound detector. With the current stage, CRESST-III, we focus on a low energy threshold for increased sensitivity towards light dark matter particles. In this manuscript we describe the analysis of one detector operated in the first run of CRESST-III (05/2016-02/2018) achieving a nuclear recoil threshold of 30.1 eV. This result was obtained with a 23.6 g CaWO 4 crystal operated as a cryogenic scintillating calorimeter in the CRESST setup at the Laboratori Nazionali del Gran Sasso (LNGS). Both the primary phonon/heat signal and the simultaneously emitted scintillation light, which is absorbed in a separate silicon-on-sapphire light absorber, are measured with highly sensitive transition edge sensors operated at ∼ 15 mK. The unique combination of these sensors with the light element oxygen present in our target yields sensitivity to dark matter particle masses as low as 160 MeV/c 2 .
Models for light dark matter particles with masses below 1 GeV/c 2 are a natural and well-motivated alternative to so-far unobserved weakly interacting massive particles. Gram-scale cryogenic calorimeters provide the required detector performance to detect these particles and extend the direct dark matter search program of CRESST. A prototype 0.5 g sapphire detector developed for the ν-cleus experiment has achieved an energy threshold of E th = (19.7 ± 0.9) eV. This is one order of magnitude lower than for previous devices and independent of the type of particle interaction. The result presented here is obtained in a setup above ground without significant shielding against ambient and cosmogenic radiation. Although operated in a highbackground environment, the detector probes a new range of light-mass dark matter particles previously not accessia Associated with the CRESST collaboration for this work.
The CRESST-II cryogenic dark matter search aims for the detection of WIMPs via elastic scattering off nuclei in CaWO 4 crystals. We present results from a lowthreshold analysis of a single upgraded detector module. This module efficiently vetoes low energy backgrounds induced by α-decays on inner surfaces of the detector. With an exposure of 29.35 kg live days collected in 2013 we set a limit on spin-independent WIMP-nucleon scattering which probes a new region of parameter space for WIMP masses below 3 GeV/c 2 , previously not covered in direct detection searches. A possible excess over background discussed for the previous CRESST-II phase 1 (from 2009 to 2011) is not confirmed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.