BackgroundClimate change and the burden of noncommunicable diseases are major global challenges. Opportunities exist to investigate health and climate change co-benefits through a shift from motorized to active transport (walking and cycling) and a shift in dietary patterns away from a globalized diet to reduced consumption of meat and energy dense foods. Given the ubiquitous use and proliferation of smartphone apps, an opportunity exists to use this technology to capture individual travel and dietary behavior and the associated impact on the environment and health.ObjectiveThe objective of the study is to identify, describe the features, and rate the quality of existing smartphone apps which capture personal travel and dietary behavior and simultaneously estimate the carbon cost and potential health consequences of these actions.MethodsThe Google Play and Apple App Stores were searched between October 19 and November 6, 2015, and a secondary Google search using the apps filter was conducted between August 8 and September 18, 2016. Eligible apps were required to estimate the carbon cost of personal behaviors with the potential to include features to maximize health outcomes. The quality of included apps was assessed by 2 researchers using the Mobile Application Rating Scale (MARS).ResultsOut of 7213 results, 40 apps were identified and rated. Multiple travel-related apps were identified, however no apps solely focused on the carbon impact or health consequences of dietary behavior. None of the rated apps provided sufficient information on the health consequences of travel and dietary behavior. Some apps included features to maximize participant engagement and encourage behavior change towards reduced greenhouse gas emissions. Most apps were rated as acceptable quality as determined by the MARS; 1 was of poor quality and 10 apps were of good quality. Interrater reliability of the 2 evaluators was excellent (ICC=0.94, 95% CI 0.87-0.97).ConclusionsExisting apps capturing travel and dietary behavior and the associated health and environmental impact are of mixed quality. Most apps do not include all desirable features or provide sufficient health information. Further research is needed to determine the potential of smartphone apps to evoke behavior change resulting in climate change and health co-benefits.
BackgroundCardiac rehabilitation (CR) is an essential component of contemporary management for patients with coronary heart disease, including following an acute coronary syndrome (ACS). CR typically involves education and support to assist people following an ACS to make lifestyle changes and prevent subsequent events. Despite its benefits, uptake and participation in tradition CR programs is low. The use of mobile technologies (mHealth) offers the potential to improve reach, access, and delivery of CR support. We aim to determine the effectiveness and cost-effectiveness of a text-messaging intervention (Text4Heart II) to improve adherence to medication and lifestyle change in addition to usual care in people following an ACS. A second aim is to use the RE-AIM framework to inform the potential implementation of Text4Heart II within health services in New Zealand.MethodsText4Heart II is a two-arm, parallel, superiority randomized controlled trial conducted in two large metropolitan hospitals in Auckland, New Zealand. Three hundred and thirty participants will be randomized to either a 24-week theory- and evidence-based personalized text message program to support self-management in addition to usual CR, or usual CR alone (control). Outcomes are assessed at 6 and 12 months. The primary outcome is the proportion of participants adhering to medication at 6 months as measured by dispensed records. Secondary outcomes include medication adherence at 12 months, the proportion of participants adhering to self-reported healthy behaviors (physical activity, fruit and vegetable consumption, moderating alcohol intake and smoking status) measured using a composite health behavior score, self-reported medication adherence, cardiovascular risk factors (lipids, blood pressure), readmissions and related hospital events at 6 and 12 months. A cost-effectiveness analysis will also be conducted. Using the RE-AIM framework, we will determine uptake and sustainability of the intervention.DiscussionThe Text4Heart II trial will determine the effectiveness of a text-messaging intervention to improve adherence to medication and lifestyle behaviors at both 6 and 12 months. Using the RE-AIM framework this trial will provide much needed data and insight into the potential implementation of Text4Heart II. This trial addresses many limitations/criticisms of previous mHealth trials; it builds on our Text4Heart pilot trial, it is adequately powered, has sufficient duration to elicit behavior change, and the follow-up assessments (6 and 12 months) are long enough to determine the sustained effect of the intervention.Trial registrationAustralian New Zealand Clinical Trials Registry, ID: ACTRN12616000422426. Registered retrospectively on 1 April 2016. Electronic supplementary materialThe online version of this article (10.1186/s13063-018-2468-z) contains supplementary material, which is available to authorized users.
This study investigated the influence of five days of moderate intensity aerobic exercise on the acquisition and consolidation of visual perceptual learning using a motion direction discrimination (MDD) task. The timing of exercise relative to learning was manipulated by administering exercise either before or after perceptual training. Within a matched-subjects design, twenty-seven healthy participants (n = 9 per group) completed five consecutive days of perceptual training on a MDD task under one of three interventions: no exercise, exercise before the MDD task, or exercise after the MDD task. MDD task accuracy improved in all groups over the five-day period, but there was a trend for impaired learning when exercise was performed before visual perceptual training. MDD task accuracy (mean ± SD) increased in exercise before by 4.5 ± 6.5%; exercise after by 11.8 ± 6.4%; and no exercise by 11.3 ± 7.2%. All intervention groups displayed similar MDD threshold reductions for the trained and untrained motion axes after training. These findings suggest that moderate daily exercise does not enhance the rate of visual perceptual learning for an MDD task or the transfer of learning to an untrained motion axis. Furthermore, exercise performed immediately prior to a visual perceptual learning task may impair learning. Further research with larger groups is required in order to better understand these effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.