The synthesis of highly substituted imidazole derivatives has been achieved from various α-azido chalcones, aryl aldehydes, and anilines. This multicomponent protocol employs erbium triflate as a catalyst resulting in excellent yield of the imidazoles.
Drought stress is a major constraint for rice (Oryza sativa L.) production and yield stability in rainfed ecosystems. Identifying genomic regions (QTLs) contributing in drought resistance will help to develop rice cultivars suitable for water-limiting environments through marker-assisted breeding. QTLs linked to physio-morphological and plant production traits under drought stress in the field were mapped by evaluating 177 F 6 recombinant inbred (RI) lines of Bala × Azucena under rainfed conditions in the target environment (TE). The rice lines were subjected to severe drought stress during reproductive phase due to a natural rainfall failure event. The RI lines showed significant variation in physio-morphological and plant production traits under stress. A total of 24 QTLs were identified for various traits under stress, which individually explained 4.6 to 22.3% phenotypic variation. Composite interval mapping detected three markers viz., RM3894, RG409 and G1073 on chromosomes 3 and 8 linked to grain yield under drought stress in TE, respectively explaining 22..3, 17.1 and 10.9% of phenotypic variation. QTLs for leaf drying, days to 50% flowering and number of productive tillers under drought stress co-located at certain of these regions. Further, QTLs for several root traits overlapped with QTLs for grain yield under stress in these RI lines, indicating the pleiotropic effects of root trait QTLs on rice performance under stress. Correlation coefficients between potential root traits determined in another study and plant production under stress in this study were not significant in these RI lines. Consistent QTLs for drought resistance traits and yield under drought stress in TE were detected and might be useful for rainfed rice improvement.
Silver catalyzed acylation of pyridine-N-oxides by α-oxocarboxylic acid is demonstrated. This decarboxylative acylation using a metal catalyst takes place at 50 °C via a radical process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.