The rates of sedimentation of fallout nuclides were determined by means of sediment traps during 28 months after the Chernobyl accident in southern Lake Paijanne, Finland. The spatial distribution of the radionuclide content of the lake bottom was studied on 35 sediment cores in winters 1987/88 and 1988/89. The results were compared with simultaneous observations of the radionuclide content of the water and seston. The role of different transfer mechanisms in the elimination of radionuclides from the water column is discussed.The values recorded for the flux to the lake sediments were on average of the same order of magnitude as the initial deposition on the lake surface (Cs-137 65 kBqm 2). The radionuclide flux to the sediments was rapid during the first months after the accident. After that the elimination of dissolved nuclides from the water mass became significantly slower. The highest flux rate was that of Ce-144 and the lowest that of Rh-106 (Ru-106). Of the radiocesium, about half of the initial inventory was transferred to the sediments after the first observation year.The content of radionuclides showed considerable spatial variation on the lake bottom (Cs-137 7-280 kBqm -2). Direct adsorption of radiocesium explains unexpectedly high concentrations on shallow erosion bottoms. There was a clear tendency for the concentrations to increase with depth, as a result of the focusing effect. Sediment resuspension had a significant impact on the total flux of radionuclides to deepwater sediments. Estimates were made of the resuspended flux of radionuclides.
The small Precambrian U-Th deposit of Palmottu, Finland, has been studied as a natural geological analogue for a highlevel radioactive waste repository. The chemical composition and physico-chemical characteristics of groundwater with tritium values in drill holes intersecting the deposit are given. Uranium concentrations and 234 U/ 238 U radioactivity ratios in groundwater, based on various sampling methods, are presented as depth profiles (from surface to 250 m). Factors affecting the distribution of uranium and the observed activity ratios in groundwater and particulate matter are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.