The search for and development of new neuroprotective (or cerebroprotective) drugs, as well as suitable methods for their preclinical efficacy evaluation, are priorities for current biomedical research. Alpha-2 adrenergic agonists, such as mafedine and dexmedetomidine, are a highly appealing group of drugs capable of reducing neurological deficits which result from brain trauma and vascular events in both experimental animals and human patients. Thus, our aim was to assess the effects of mafedine and dexmedetomidine on the brain’s electrical activity in a controlled cortical-impact model of traumatic brain injury (TBI) in rats. The functional status of the animals was assessed by electrocorticography (ECoG), using ECoG electrodes which were chronically implanted in different cortical regions. The administration of intraperitoneal mafedine sodium at 2.5 mg∙kg−1 at 1 h after TBI induction, and daily for the following 6 days, restored interhemispheric connectivity in remote brain regions and intrahemispheric connections within the unaffected hemisphere at post-TBI day 7. Animals that had received mafedine sodium also demonstrated an improvement in cortical responses to photic and somatosensory stimulation. Dexmedetomidine at 25 μg∙kg−1 did not affect the brain’s electrical activity in brain-injured rats. Our results confirm the previously described neuroprotective effects of mafedine sodium and suggest that ECoG registration and analysis are a viable method evaluating drug efficacy in experimental animal models of TBI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.