Riverine organic matter supports of the order of one-fifth of estuarine metabolism. Coastal ecosystems are therefore sensitive to alteration of both the quantity and lability of terrigenous dissolved organic matter (DOM) delivered by rivers. The lability of DOM is thought to vary with age, with younger, relatively unaltered organic matter being more easily metabolized by aquatic heterotrophs than older, heavily modified material. This view is developed exclusively from work in watersheds where terrestrial plant and soil sources dominate streamwater DOM. Here we characterize streamwater DOM from 11 coastal watersheds on the Gulf of Alaska that vary widely in glacier coverage (0-64 per cent). In contrast to non-glacial rivers, we find that the bioavailability of DOM to marine microorganisms is significantly correlated with increasing (14)C age. Moreover, the most heavily glaciated watersheds are the source of the oldest ( approximately 4 kyr (14)C age) and most labile (66 per cent bioavailable) DOM. These glacial watersheds have extreme runoff rates, in part because they are subject to some of the highest rates of glacier volume loss on Earth. We estimate the cumulative flux of dissolved organic carbon derived from glaciers contributing runoff to the Gulf of Alaska at 0.13 +/- 0.01 Tg yr(-1) (1 Tg = 10(12) g), of which approximately 0.10 Tg is highly labile. This indicates that glacial runoff is a quantitatively important source of labile reduced carbon to marine ecosystems. Moreover, because glaciers and ice sheets represent the second largest reservoir of water in the global hydrologic system, our findings indicate that climatically driven changes in glacier volume could alter the age, quantity and reactivity of DOM entering coastal oceans.
Articles Salmon runs in the Pacific Northwest have been declining for decades, so much so that many runs are threatened or endangered; others have been completely extirpated (Nehlsen et al. 1991). This "salmon crisis" looms large in the public eye, because it has serious and wideranging economic, cultural, and ecological repercussions. Billions of dollars have gone into industrial and agricultural projects that alter regional rivers in ways that, often unintentionally, make them inaccessible or unsuitable for salmon. Recently, billions more have been spent in largely unsuccessful attempts to restore the languishing salmon runs (Lichatowich 1999). Moreover, enormous nonmonetary resources have been expended in assigning and denying responsibility for failed runs and debating the possible efficacy of various remedies.As resources that are devoted to reversing declining runs of salmon have increased, scientists and resource managers have been expanding our understanding of the ecological role of salmon and other anadromous fishes, which return from the sea to spawn in fresh water. We have known for years that spawning salmon serve as a food resource for wildlife species (e.g., Shuman 1950) and, when they die after spawning (as most Pacific salmon do), their carcasses provide nutrients (e.g., carbon [C], nitrogen [N], phosphorus [P]) to freshwater systems (e.g., Juday et al. 1932). More recently, scientists have documented that these "salmon-derived nutrient" subsidies may have significant impacts on both freshwater and riparian communities and on the life histories of organisms that live there (Willson et al. 1998, Cederholm et al. 1999.Because of the burgeoning interest in salmon, growing indications of their ecological importance, and recent calls for management to consider the role of salmon in aquatic and terrestrial ecosystems (e.g., Larkin and Slaney 1997), we take this opportunity to review what is understood about the function of salmon as key elements of ecological systems. Our objectives are twofold. First, we expand on previous reviews of salmon (Willson et al. 1998, Cederholm et al. 1999) to include recent research that has amplified and modified earlier ideas about the contribution of salmon to ecosystem processes. In doing so, we describe the composition, magnitude, and distribution of marine inputs to freshwater and terrestrial systems via salmon. We use an expanding group of studies pertaining to stream nutrient budgets and salmon physiology to construct a schematic that illustrates salmon-derived products and the pathways by which they enter and are retained in aquatic and terrestrial food webs. We then consider the ecological variation associated with salmonid ecosystems and how this may influence the ecological response to the salmon input. Second, we consider how this variation in ecosystem response may influence management and conservation efforts.
In Victoria, Australia, both dryland salinity and salinity in irrigation regions are serious agricultural problems. One option to control the latter is to pump groundwater to maintain it below the surface. However, this leaves a saline wastewater for disposal, probably into local streams or wetlands. This review of the salt sensitivity of the biota of Australian streams and wetlands gives information of interest to those responsible for developing controls on these discharges. The review addresses the lethal and sub-lethal effects of salinity on microbes (mainly bacteria), macrophytes and micro-algae, riparian vegetation, invertebrates, fish, amphibians, reptiles, mammals, and birds. Data suggest that direct adverse biological effects are likely to occur in Australian river, stream and wetland ecosystems if salinity is increased to around 1000 mg L-I. The review highlights a general lack of data on the sensitivity of freshwater plants and animals to salinity increases.
How to obtain copies of this and other HTA programme reports An electronic version of this title, in Adobe Acrobat format, is available for downloading free of charge for personal use from the HTA website (www.hta.ac.uk). A fully searchable DVD is also available (see below).Printed copies of HTA journal series issues cost £20 each (post and packing free in the UK) to both public and private sector purchasers from our despatch agents.Non-UK purchasers will have to pay a small fee for post and packing. For European countries the cost is £2 per issue and for the rest of the world £3 per issue. How to order:-fax (with credit card details) -post (with credit card details or cheque) -phone during office hours (credit card only).Additionally the HTA website allows you to either print out your order or download a blank order form. Contact details are as follows:Synergie UK (HTA Department) Digital House, The Loddon Centre Wade Road Basingstoke Hants RG24 8QW Email: orders@hta.ac.uk Tel: 0845 812 4000 -ask for 'HTA Payment Services' (out-of-hours answer-phone service) Fax: 0845 812 4001 -put 'HTA Order' on the fax header Payment methods Paying by chequeIf you pay by cheque, the cheque must be in pounds sterling, made payable to University of Southampton and drawn on a bank with a UK address.Paying by credit card You can order using your credit card by phone, fax or post. SubscriptionsNHS libraries can subscribe free of charge. Public libraries can subscribe at a reduced cost of £100 for each volume (normally comprising 40-50 titles). The commercial subscription rate is £400 per volume (addresses within the UK) and £600 per volume (addresses outside the UK). Please see our website for details. Subscriptions can be purchased only for the current or forthcoming volume.How do I get a copy of HTA on DVD?Please use the form on the HTA website (www.hta.ac.uk/htacd/index.shtml). HTA on DVD is currently free of charge worldwide.The website also provides information about the HTA programme and lists the membership of the various committees. NIHR Health Technology Assessment programmeThe Health Technology Assessment (HTA) programme, part of the National Institute for Health Research (NIHR), was set up in 1993. It produces high-quality research information on the effectiveness, costs and broader impact of health technologies for those who use, manage and provide care in the NHS. 'Health technologies' are broadly defined as all interventions used to promote health, prevent and treat disease, and improve rehabilitation and long-term care. The research findings from the HTA programme directly influence decision-making bodies such as the National Institute for Health and Clinical Excellence (NICE) and the National Screening Committee (NSC). HTA findings also help to improve the quality of clinical practice in the NHS indirectly in that they form a key component of the 'National Knowledge Service' . The HTA programme is needs led in that it fills gaps in the evidence needed by the NHS. There are three routes to the start of projects. Fi...
[1] Dissolved organic matter (DOM) transport during storms is studied because it is important in the annual watershed export budget for dissolved organic carbon (DOC). We sampled stream water from two watersheds (upland and wetland-dominated) and three subcatchments (bog, forested wetland, and mineral forest) located within the wetland-dominated watershed during a fall and summer storm to investigate changes in the magnitude and chemical quality of DOM during stormflows. Stormflow export of DOC ranged from 2.3 kg C ha À1 in the upland watershed to 13.9 kg C ha À1 in the bog subcatchment. Biodegradable DOC (BDOC) export for these same storms ranged from 0.6 kg C ha À1 in the upland watershed to 4.2 kg C ha À1 in the bog subcatchment. The percent BDOC decreased during both storms in the upland watershed, while percent BDOC increased in the three wetland streams. Parallel factor analysis (PARAFAC) modeling of fluorescence excitation-emission matrices further showed that as stream water DOM concentrations increased during stormflows in the upland watershed, the contribution of protein-like fluorescence decreased and humic-like fluorescence increased. However, the contribution of protein-like fluorescence increased and humic-like fluorescence decreased slightly in the three wetland streams. These results indicate that shifts in the biodegradability and chemical quality of DOM are different for upland and wetland watersheds. Taken together, our findings suggest stormflows are responsible for substantial export of BDOC from coastal temperate watersheds. Moreover, we found that PARAFAC modeling of fluorescent DOM is an effective tool for elucidating shifts in the quality of stream water DOM during storms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.