Plants produce a variety of molecules to defend themselves from fungal pathogens. Defensins belong to the family of antimicrobial peptides that play a central role in innate immunity in all species of plants. We have previously reported the purification of antimicrobial peptides from Scots pine seedlings and the identification of some of them, including defensin, by mass spectrometry. In this study, we extend our original study on molecular cloning of Pinus sylvestris defensin 1 (PsDef1) by presenting the expression and affinity purification of recombinant defensin 1 (rPsDef1). The full-length coding sequence of PsDef1 has an open reading frame capable to encode a protein of 83 amino residues, including a signal peptide of 33 aa, followed by a characteristic defensin domain of 50 amino acids representing its active form. The calculated molecular weight of the mature form of PsDef1 is 5,601.6 Da. We have employed pET system to express mature form of PsDef1 fussed to GST. As GST-PsDef1 fusion protein was not biologically active, we removed GST moiety from the mature defensin 1 peptide by proteolytic cleavage with Factor Xa. The resulting rPsDef1 protein exhibited strong antifungal activity against a panel of pathogenic fungi which is comparable to that of endogenous Scots pine defensin 1. In addition, rPsDef1 was used to produce specific polyclonal antibodies. Using generated antibodies, we found that the level of PsDef1 is significantly increased in Scots pine seedlings during germination and in their response to pathogenic infection with Heterobasidion annosum.
In Europe, most of the alpine timberline ecotone has been altered by human activities and climate change. Hence, mountain forests are of the highest conservation interest. Here, we screened 25 populations of Swiss stone pine (Pinus cembra L.) from the Carpathians and the Alps, using a set of ten microsatellite primers to assess the relative conservation value of populations sampled in Polish and Slovak Tatra National Parks, where potential extinction risk is the highest within the Carpathian range. Although endangered, with small and fragmented populations, P. cembra in the Tatra Mts. shows high levels of allelic richness (AR = 5.0) and observed heterozygosity (H o = 0.554). Our results suggest that anthropogenic habitat fragmentation has had little impact on DNA variation of Swiss stone pine in the Tatra Mts. However, the effects of changing conditions on the genetic structure may occur with a substantial time delay due to the long life span of P. cembra. Moreover, inbreeding depression may occur in the next generations, since we found inbreeding (F IS = 0.063) and elevated coancestry coefficient (h = 0.062) in all populations. Also a shallow pattern of genetic differentiation between populations was found, indicating recent fragmentation of a common gene pool that formerly occupied a larger range. Therefore, the Tatra Mts. can be considered as a single conservation unit. Based on our results, we suggest possible conservation activities for Swiss stone pine both in Poland and Slovakia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.